
Approximating the Power Absorption
of PTO Settings of Wave Energy

Converters using Surrogate Models for
Optimisation

Constantina Pyromallis
Student ID: a1668648

Supervisor: Markus Wagner

Bachelor of Computer Science (Honours)
The University of Adelaide

Contents

1 Introduction 3
1.1 Background and Motivation . 3

1.1.1 Importance of PTO control . 4
1.1.2 Model Runtime, and Surrogate Models 5

1.2 Related Work . 5
1.2.1 Optimisation of array parameters 5
1.2.2 PTO controllers . 5
1.2.3 Surrogate models . 5

2 Approximating Power Absorption for Optimisation Purposes 7
2.1 Contribution . 7
2.2 State-of-the-art models to approximate . 7

2.2.1 PTOsame model . 8
2.2.2 PTOindiv model . 8
2.2.3 Discussion of sub-models: original, altered, ignorant 8

2.3 Collecting data . 9
2.3.1 Collection methods . 10
2.3.2 Visualisation . 11

2.4 Training Surrogate Models . 11
2.4.1 K nearest neighbours . 12
2.4.2 Random forest . 12
2.4.3 Multilayer perceptrons . 13
2.4.4 Support vector machines . 13

3 Approximating Power Absorption of Arrays of WEC with the same
PTO Settings 14
3.1 Regression . 14

3.1.1 By approach . 14
3.1.2 Comparing approaches . 24

3.2 Classification . 26
3.2.1 By approach . 26
3.2.2 Comparing approaches . 33

4 Approximating Power Absorption of Arrays of WEC with individual
PTO Settings 34
4.1 Regression . 34

4.1.1 By approach . 34
4.1.2 Comparing approaches . 41

4.2 Classification . 42
4.2.1 By approach . 42

1

4.2.2 Comparing approaches . 46

5 Future Work 47
5.1 Future Work . 47

5.1.1 Data collection . 47
5.1.2 Performance metrics . 47
5.1.3 Parameter tuning . 47
5.1.4 Surrogates . 48
5.1.5 Assessing optimality of PTO settings resulting from optimising sur-

rogates . 48

6 Conclusion 49

Appendices 53
.1 Calculating accuracy . 54
.2 Calculating precision . 54

2

Chapter 1

Introduction

1.1 Background and Motivation
The ocean is a natural source of wave energy, and covers 71% of the Earth’s surface, yet it
is a relatively untapped source of renewable energy [1, 2]. Wave energy can be harnessed
and turned into electricity using a wave energy converter (WEC), of which there are many
types. One such type of WEC is a point absorber buoy, which either floats on, or just
below, the surface of the water, and moves with the waves to generate energy [3].

Carnegie Wave Energy developed a point absorber called CETO 5, which is a fully
submerged buoy tethered to the hydraulic pump in a power take off system (PTO) on
the sea floor [3, 4]. The up and down movement of waves causes the buoys to move up
and down, which in turn drives the pump. The pump pressurises the water in a pipe that
spans the distance from the buoys to the shore. When the water reaches the shore, it is
either used to turn the turbines of an off the shelf generator to produce electricity, or to
power a reverse osmosis desalination to create potable water [5]. A visual representation
of this system can be seen in Figure 1.1.

An alternative to the single-tether buoys are three-tether buoys (depicted in Figure
1.2), in which there are 3 PTOs on the sea floor which each have a tether that connects
to the buoy. This allows not only up and down movement (heave) to be captured and
converted, but also surge and sway movement [6]. A single buoy can only produce a
limited amount of electricity, so they are often deployed in large numbers as an array. In

Figure 1.1: Operation of the CETO system [5].

3

Figure 1.2: Representation of a three-
tether WEC [8].

Figure 1.3: Bird’s eye view of array with
shared PTO [8].

the case of three-tether buoys, PTO can be shared by multiple buoys (see Figure 1.3).

1.1.1 Importance of PTO control

In addition to containing the hydraulic pump, the PTO is also used to control the move-
ment of the buoy and absorb power from the waves. To achieve this, CETO contains
a spring with spring constant k (in N/m/s), and damper (decreases amplitude) with
damping factor d (in N/m). These are referred to as the PTO parameters.

The amount of power absorbed from an incoming wave is maximal if the frequency of
the wave matches the natural frequency of the buoy [7]. Thus, we should force the buoy’s
natural frequency to match the wave’s frequency. The natural frequency of the buoy is
dependent on k, and thus we can control the buoy’s natural frequency. The value of d
decreases the amplitude of the buoy’s movement. If d is too high, the buoy won’t move
very much with the waves, and hence doesn’t absorb as much power. If d is too low, the
buoy will move too much, and will lose energy. Note that d and k both alter and are
dependent on the hydrodynamics of the buoy and cannot be optimised independently.

Additionally, to avoid damage, tether elongation cannot exceed 3 metres more than
its natural length (between taut and slack). The tether elongation depends on both d and
k. It is important to note that, for inconsistent sea states, there will be different wave
frequencies, so for constant spring and damper values, the natural frequency will only
match with one frequency of waves.

A series of buoys deployed near each other are referred to WEC arrays. They are often
deployed in a grid or hexagonal pattern (see Figure 1.3). The primary purpose of WEC
arrays is to capture energy, and thus it is something researchers aim to optimise. There
are many aspects that can be individually optimised, but the key ones are the geometry
of the buoy, the control via PTO, and the placement of buoys relative to one another.
Our research focus is control via PTO. This is important because, as the incoming waves
bounce off the first row of buoys, the wave properties change, so the waves hitting the
second row of buoys are different. This means .

4

1.1.2 Model Runtime, and Surrogate Models

Many state-of-the-art models take large amounts of computational time to evaluate how
much power a WEC array produces, given its settings. Many optimisation algorithms
require many evaluations of different settings in order to find the optimal. Unfortunately,
when these slow models are run multiple times, it can make running some optimisation
algorithms infeasible. As such, it would be desirable to develop a model that is faster,
even if it means it may be less accurate. Such approximations of the original model are
called surrogate models.

1.2 Related Work

1.2.1 Optimisation of array parameters

Recall that the primary purpose of WEC arrays is to absorb power from waves. Arrays
of WEC have many possible settings and parameters, including the number of buoys in
the array, their locations, their PTO parameters d and k. Many papers aim to optimise
these settings to find the values that absorb a maximal amount of power.

In an array of buoys, waves will be reflected off of buoys in various directions. This
means that constructive and destructive interference can occur, and thus, in some loca-
tions within the array, energy absorption will be increased. This is the reason optimisation
of placement of buoys is useful. Previous research into this area includes the development
of a model for three-tether buoys in an array and the amount of energy it absorbs. This
model is used as a fitness function for various genetic algorithms including (1+1)EA and
CMA-ES which mutate the array by moving a single buoy [8].

1.2.2 PTO controllers

As mentioned in Section 1.1.1, inconsistent sea states will have waves with a variety of
frequencies. If the PTO parameters are static, the natural frequency of the buoy will only
match with one wave frequency. Thus, dynamic PTO controllers have been developed that
adjust the parameters as time passes, and the waves change. Dynamic causal controllers
do not explicitly require information about waves before they arrive. In [16], they note
that the optimal causal controller can be found by solving a nonstandard linear-quadratic-
Gaussian (LQG) optimal control problem.

In order to absorb maximum energy in inconsistent seas, the buoy can use explicit
knowledge of incoming wave frequencies, in order to alter its own natural frequency.
Controllers that use this information are acausal. Simple gradient-ascent algorithms have
been used to alter PTO settings to match the incoming wave [9]. This is used as a max
power point tracking (MPPT) control. The MPPT updates its PTO by a given step size
at a given rate, and determines if the changes increased power absorption. It does this
until the maximum power has been found.

1.2.3 Surrogate models

In regards to research into surrogate models, some approaches that have been looked
into include a linear autoregressive with exogenous input (ARX) model, the Kolmogorov-
Gabor polynomial (KGP), which is a natural polynomial extension of the ARX model
and an artificial neural network (ANN) model [10]. These are applied to the behaviour

5

of a buoy over time. Some manual parameter tuning is applied to the ANN; the numbers
of neurons in each layer, are increased incrementally, until a good balance is achieved
between approximation of the training data and generalisation capability.

In [27], they use an Adaptive Network-based Fuzzy Inference System (ANFIS) to model
non-buoyant WEC. Their training data was gathered via their own real experiments, and
was therefore limited. Hence, they chose ANFIS for its predictive ability in uncertain
environments. Their use case is similar to ours: to carryout further experiments to perform
an optimisation upon.

6

Chapter 2

Approximating Power Absorption for
Optimisation Purposes

2.1 Contribution
This research trains surrogate models to approximate state-of-the-art models; that is,
the surrogates take the same input (array settings/parameters), and give similar output
(power absorbed per buoy). The output of surrogates takes less time to evaluate than the
original model when given the same array parameters.

The primary purpose of this is to allow optimisation algorithms that require many
model evaluations, to run in a shorter amount of time. The optimised WEC array param-
eters can be preprocessed by running the algorithms before array installation, or calculated
in real time to make on-the-fly optimisations. As we wish to focus on optimising PTO
control, we developed surrogates that can predict the power absorbed for various values
of PTO parameters, d and k.

We assess the accuracy of the surrogate models, as well the effect of different surrogate
parameters on the accuracy. The surrogate parameters often affect the training time, and
so, we also assess the training time and the predicting time.

2.2 State-of-the-art models to approximate
We worked in collaboration with the School of Mechanical Engineering at The University
of Adelaide to conduct our research. They provided an accurate, state-of-the-art mathe-
matical model (written in Matlab) for a 3-tether CETO 5 given in [8]. For various WEC
array settings and sea states, this can calculate the total power absorbed, and whether
the settings are feasible (recall, settings are feasible if tether elongation does not exceed
3m). This is the model we approximate using surrogate models for optimisation purposes.
When run on an Intel i7 core, the amount of time the model takes to determine the power
absorption of a 2x2 array (with array settings given in Section 2.3) on average is 0.94
seconds (based on 100 samples). We therefore want the surrogate models to run faster
than this.

As our focus is on the effect of PTO settings, we consider approximating the power
absorption based on the PTO settings alone, and keeping all other array properties con-
stant (see Section 2.3 for constants). One important constant is the number of buoys in
the array; we consider an array with 4 buoys, as it is a small yet non-trivial model to
approximate. Even with this constraint on approximation, there are still two different

7

(a) (b)

Figure 2.1: A visualisation of the PTOsame model. Figure 2.1(a) is the raw output of the
mathematical model. The valley in the surface in Figure 2.1(b) is caused by infeasible
parameter values. The power produced by these parameter values are set to 0. Infeasible
parameters occur when the tether-elongation of the buoys exceeds 3m.

ways we can consider varying the PTO settings.

2.2.1 PTOsame model

The PTOsame model varies d and k, where d and k are the PTO settings and are the same
for all buoys. Thus, this model has 2 parameters. This means, the settings and resulting
power can be visualised in three-dimensional space (See Figure 2.1).

2.2.2 PTOindiv model

The PTOindiv model has 8 parameters, and will therefore be more difficult to learn. The
parameters are d1, d2, d3, d4, k1, k2, k3, k4, where di and ki correspond to the ith buoy’s
PTO settings.

2.2.3 Discussion of sub-models: original, altered, ignorant

One thing to note is that, for optimization purposes, if we want to consider only feasible
setting, it is not useful to approximate the original model (depicted in Figure 2.1(a)). For
this reason, we also try to approximate the altered model, in which the infeasible powers
are set to zero (depicted in Figure 2.1(b)). However, the steep cliff of the altered model
can be hard for mathematically based approaches to learn.

In order to make approximations of the original model useful, we can also develop
a classifier to determine whether PTO settings are infeasible or feasible. This would be
utilised in optimisation algorithms to classify and ignore infeasible settings. If we ignore
infeasible settings, we can also consider training surrogates based only on feasible data
(ignorant model), since we don’t care about the approximated power of thoe settings.
In other words, we only train the surrogate on the feasible samples. See Figure 2.2 for
visualisations of all 3 sub-models.

When classifying feasibility, we simply use the original sub-model. We could also
classify the altered sub-model, since power is the only difference between the sub-models,
and feasibility is the same for both. However. the ignorant sub-model would not be useful,
as it removes infeasible samples. There is a very clear distinction between the PTO values
that result in feasible power, and those that don’t, at least for the PTOsame model. The

8

(a) (b)

(c) (d)

Figure 2.2: The data for the PTOsame sub-models. Figure 2.2(a) is the original sub-
model, Figure 2.2(b) is the altered sub-model, and Figure 2.2(c) is the ignorant sub-model.
These are what we aim to approximate. Figure 2.2(d) is the feasibility of the PTOsame

sub-models. Yellow points are feasible, and green are infeasible. This is what we aim to
classify.

classifier only has to develop a curve to separate these, as the regions of feasible data do
not enclose any parts of the infeasible regions, and vice versa. See Figure 2.2(d) for a
visualisation.

2.3 Collecting data
To train the surrogates, we need data. The data is a collection of samples that includes
various input and associated output from the state-of-the-art model. We only want to
consider inputs with varied d and k. All other array parameters were kept constant:

• Number of buoys: 4.

• Relative locations of buoys: (0, 0), (0, 50), (50, 0), (50, 50), in metres, where (0, 0)
is the bottom-left corner.

• Wave frequencies: 0.7 rad/s.

• Wave direction: from left, with an incident angle of 0 radians.

9

• Buoy diameter: 5m.

• Water depth: 30m.

• Submergence depth (from the water level to the top of the buoy): 3m.

Each sample in a dataset has an input vector x and output vector y. The final form
is "x1, ... xn, y1, ... yn". The input vector for PTOsame is [d, k], and for PTOindiv it is
[d1, d2, d3, d4, k1, k2, k3, k4]. For both, the output vector is [power, feasibility].

2.3.1 Collection methods

For each model PTOsame and PTOindiv, we collected data using two different methods:
grid and random. Note that the collection methods are primarily ways of varying the
input variables. Each method then calculates the corresponding output determined by
the mathematical model, and stores it as a sample.

We obtained 4 data sets in total: PTOsame samples generated from the grid method
and the random method (3112 data points each), and PTOindiv samples generated from
the grid method and the random method (160000 data points each). The data was
collected on a Xeon E5-2698v3 CPU. The PTOsame data sets took 27 minutes each to
collect, while the PTOindiv data sets took 22.5 hours. This leads to an average time of
0.5 seconds to calculate the power absorption for a given d and k.

Grid

The first collection method used a grid search, so the input values were at uniformly
spaced intervals. We considered a valid set of d and a valid set of k, and calculated the
resulting power for every d and for every k. The valid set of d, or k, can be defined by a
lower and upper bound for each, and a step size for the difference between each value in
the set. The grid to search can thus be defined by the lower d and k, upper d and k, and
the step size. We refer to these as lower_d, lower_k, upper_d, upper_k, and step_size,
respectively. If D and K are the total number of valid d and k in each set, then the grid
search takes Θ(DK) time to execute.

Data for the PTOsame model was generated using a grid that can be defined as follows:

• lower_d = 0

• lower_k = 0

• upper_d = 500000

• upper_k = 600000

• step_size = 10000

Data for the PTOindiv model was generated using a grid that can be defined as follows:

• lower_d = 0

• lower_k = 0

• upper_d = 450000

• upper_k = 600000

• step_size = 150000

10

(a) (b)

Figure 2.3: A visualisation of a subset of the samples collected for the PTOindiv model.
Each sample is plotted as a line connecting input variable values that correspond to that
same sample. Figure 2.3(a) contains the top 100 feasible samples by power absorption.
Figure 2.3(b) contain the top 100 both feasible and infeasible. Each samples has an
opacity which is equal to (power−powermin)/(powermax−powermin), where power is the
power absorbed by that sample, powermin and powermax are the minimum power and
maximum power absorbed across all plotted samples, respectively. The red line is the
optimal settings for the PTOsame model.

Random

The second method we used was to, for each input variable, select a valid value, uniformly
at random. Use this to generate input vectors until the desired number of samples is
obtained.

The valid values are any integers in the range given by the same lower and upper d
and k given above. This is repeated until the desired number of samples is obtained.

2.3.2 Visualisation

The grid data for PTOsame is visualised in Figure 2.1. A subset of the random data for
PTOindiv is visualised as a parallel plot in Figure 2.3. This depicts the first 100 samples
when sorted in descending order by power absorption, as well as the first 100 samples
that are all feasible.

2.4 Training Surrogate Models
Surrogate models are the product of some training approach; we consider supervised
training approaches. All of the approaches can be used for both approximating the power
absorption of PTO settings (regression) and classifying the settings as either feasible and
infeasible. Note that the resulting regressors and classifiers will be distinct surrogates.

There are 4 distinct problems that we wish to solve using surrogate models: ap-
proximating PTOsame, classifying PTOsame, approximating PTOindiv, and classifying
PTOindiv.

When approximating, either PTOsame or PTOindiv models, we want to consider train-
ing on both the grid and random data sets. We also want to consider approximating
the sub-models, altered, ignorant, and original (which involve altering the datasets as

11

mentioned in Section 2.2.3). When classifying the models, we want to consider training
on both the grid and random data sets again. We don’t need to consider any sub-model
besides the original. This is because the altered sub-model only differs from the original in
its values for power, which doesn’t matter when classifying for feasibility. In addition. the
ignorant sub-model doesn’t contain infeasible samples, which is not useful for classifying
feasibility.

Each data set is divided into two equally sized sets: one for training, and one for
validating. To divide the grid data set, it is first sorted by its d value, and then its
k value, and every second datum is put into the training set, and all others into the
validation set. The random data sets are divided in half so the first half is the training
set, and the second is the validation set. Both subsets are still collected uniformly at
random.

All the surrogates are trained using the training set only, and the performance is
assessed by using the surrogates to predict values for the validation set. The accuracy
metric we use is R2 (see Equation 3) and the precision metric is MSE (see Equation 5).
All surrogate implementations are from the sklearn python library [31]. All experiments
were run on a intel i7 core. Below, we describe the surrogates and their settings (hyper
parameters), and the results are given in the 2 following chapters. Any hyper parameters
that are not defined below are the defaults as defined by sklearn documentation.

2.4.1 K nearest neighbours

The k nearest neighbours method (KNN) for approximation involves storing all the train-
ing input vectors in a data structure, with their associated outputs. When approximating
(the power) of a new input vector (PTO settings), the algorithm looks up the k nearest
training vectors, and averages their associated outputs (power absorption). In this case,
each neighbour contributes uniformly to the final prediction. However, a good heuristic is
to use the weighted average of the nearest neighbour outputs, where the weight for each
neighbour is the distance to the new input vector to approximate. This way, the closer
neighbours influence the result more. When classifying data, the training input vectors
are stored with their associated classification, rather than real valued output, and similar
logic is applied.

When assessing the performance of this surrogate, we consider the weight heuristics,
"uniform" and "distance", and try all k in the set {1, 2, 3, 4, 5, 7, 10, 15}.

2.4.2 Random forest

When given some input vector, a random forest regressor (RFR) utilises multiple random
decision trees to guess the portion of the space, that the corresponding output should be
in. Each node in a tree corresponds to an input value (in this case, the PTO parameters,
d and k, or d1, ... d4, k1, ... k4), and has some threshold. If a value exceeds the threshold,
we look at the node to the right (otherwise, to the left), and repeat the process. Leaf
nodes contain the predicted output for the input. Random forests train a number of
decision trees on random sample subsets. The output of the randomly trained decision
trees is then averaged to produce the final output of the random forest regressor. For
random forest classifiers, everything is the same, except leaf nodes store classes instead
of output.

The hyper parameter of this surrogate that we are interested in is the number of
decision trees used in the random forest. We consider the following number of trees: {1,

12

5, 10, 20, 50, 100}.

2.4.3 Multilayer perceptrons

Multilayer perceptrons (MLP) uses a back-propagation algorithm to update the weights
between nodes in the network. The hyper parameters we consider are the number of layers,
and the number of nodes per layer. We consider all combinations of number of layers {5,
10, 20}, and node per layer {5, 10, 20, 50, 100} for approximation. For regression of the
PTOsame model, we add 30 to the set of numbers of layers.

2.4.4 Support vector machines

When classifying linearly separable data, we wish to find the best hyperplane w(T)x + b
that separates the data. One way of defining the best hyperplane, is the separating
hyperplane for which the distance to the nearest point for each class set is maximised.
This is referred to as the maximum-margin hyperplane. Note that the maximum-margin
hyperplane is completely dependent on the points closest to it (other points further away
can be ignored). These points are called support vectors, and give SVMs their name. To
use SVM for approximation, we instead try to fit a hyperplane to the data so we have a
minimum margin hyperplane that all the training data lies within.

We can classify non-linearly separable data using different kernels. In our experiments,
we consider radial basis function (RBF) kernels. We can also introduce slack variables
to allow outliers in our training data. This introduces another hyperparameter, C. We
consider values for C from the set {1e4,1e5,1e6,1e7}. Note that we do not use SVM for
the PTOindiv model due to excessive runtimes.

13

Chapter 3

Approximating Power Absorption of
Arrays of WEC with the same PTO
Settings

In this chapter, we look at the performance of each surrogate for both regression and
classification on the PTOsame model. We look at 4 different performance metrics: the
training time, predicting time, mean-squared error (MSE) and variance score. Training
time is the total time (in ms) taken to train the surrogate on all training data, and
predicting time is the total time (in ms) taken to predict all validation data. Mean-
squared error is a measurement of precision (low MSE means high precision), given in
Equation 5, and variance score is the R2 value, a measurement of accuracy, given in
Equation 3. All surrogates are trained and assessed twice; once on the grid data, and
once on the random data. One thing to note is that the grid data predictions may be
biased, since the validation set is also in a grid formation, and hence equidistant from
all the training points. Thus, it may not be a good measure of how well the surrogates
trained on grid data will perform when optimisations are run on them.

3.1 Regression
As mentioned previously, we wish to approximate 3 different sub-models: original, al-
tered, and ignorant. This section assesses the approximation or regression results by each
approach individually, and then compares the approaches.

3.1.1 By approach

Each subsection of this section looks at the performance of a surrogate when approximat-
ing all sub-models of PTOsame when trained on either the grid or random data sets.

KNN

The raw KNN results are in Tables 3.1 to 3.4. These are visualised in Figure 3.1. For
all sub-model approximations trained on either grid or random datasets, the distance
metric performs as well or better than the uniform metric in terms of both accuracy and
precision. This is expected, since if the point to predict is closer to one training point than
all the others, that training point will have more of an effect on the value when using the

14

k 1 2 3 4 5 7 10 15
original grid 0.92 0.96 0.98 0.98 0.97 0.96 0.96 0.95
alter grid 0.9 0.94 0.96 0.95 0.95 0.95 0.95 0.94
ignore grid 0.99 1 1 1 1 1 1 1
original random 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
alter random 0.92 0.95 0.96 0.96 0.95 0.95 0.95 0.95
ignore random 0.99 0.99 0.99 1 1 1 0.99 0.99
k 1 2 3 4 5 7 10 15
original grid 0.92 0.96 0.98 0.97 0.96 0.94 0.95 0.93
alter grid 0.9 0.94 0.96 0.95 0.94 0.94 0.94 0.92
ignore grid 0.99 1 1 1 1 0.99 1 0.99
original random 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98
alter random 0.92 0.95 0.96 0.95 0.94 0.95 0.94 0.93
ignore random 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 3.1: R2 of KNN regressors. The upper table uses the distance metric, while the
lower one uses the uniform metric.

k 1 2 3 4 5 7 10 15
original grid 1.59099e10 9.24279e9 4.45886e9 4.51485e9 5.51423e9 8.26821e9 8.0757e9 1.07123e10
alter grid 1.14427e10 6.5418e9 4.89679e9 5.31547e9 5.57529e9 5.55176e9 6.01162e9 7.11602e9
ignore grid 1.09169e9 3.68104e8 1.58918e8 7.65866e7 1.60519e8 2.52988e8 2.18355e8 2.99627e8
original random 2.89739e9 2.13034e9 1.56615e9 1.58338e9 1.55676e9 1.32347e9 1.41633e9 1.78234e9
alter random 9.37492e9 5.56231e9 4.37329e9 4.9306e9 5.41526e9 5.32933e9 5.73802e9 6.1325e9
ignore random 8.88614e8 7.4022e8 5.9115e8 4.26556e8 4.22102e8 4.58563e8 5.82524e8 7.31973e8

k 1 2 3 4 5 7 10 15
original grid 1.59099e10 9.24279e9 4.45886e9 5.97394e9 8.34906e9 1.28564e10 1.08311e10 1.54856e10
alter grid 1.14427e10 6.5418e9 4.89679e9 5.32543e9 6.36685e9 6.51425e9 6.93442e9 8.81628e9
ignore grid 1.09169e9 3.68104e8 1.78398e8 1.23541e8 3.6937e8 5.73274e8 3.79189e8 5.52243e8
original random 2.89739e9 2.4319e9 1.90268e9 2.19934e9 2.17502e9 2.10159e9 2.58133e9 3.8784e9
alter random 9.37492e9 5.57133e9 4.20432e9 5.08706e9 6.2655e9 6.16941e9 7.12517e9 8.15028e9
ignore random 8.88614e8 8.03131e8 6.82602e8 5.64775e8 6.06999e8 7.25942e8 9.59868e8 1.28814e9

Table 3.2: MSE of KNN in ms. The upper table uses the distance metric, while the lower
one uses the uniform metric.

k 1 2 3 4 5 7 10 15
original grid 0.001621 0.001307 0.001246 0.001326 0.001254 0.001262 0.001253 0.00136
alter grid 0.001485 0.001169 0.001149 0.001169 0.001361 0.001192 0.001136 0.001166
ignore grid 0.001764 0.001854 0.001747 0.001489 0.001495 0.001524 0.001374 0.001469
original random 0.001316 0.001372 0.001514 0.001426 0.001448 0.001333 0.001442 0.001344
alter random 0.001446 0.001375 0.001444 0.001265 0.001268 0.001374 0.001465 0.001505
ignore random 0.001354 0.001516 0.001332 0.001434 0.001391 0.001463 0.001463 0.001548
k 1 2 3 4 5 7 10 15
original grid 0.001607 0.001313 0.001258 0.001219 0.001193 0.001244 0.001235 0.001205
alter grid 0.001959 0.001369 0.001269 0.001226 0.001269 0.001225 0.001276 0.001244
ignore grid 0.00162 0.001488 0.001484 0.001482 0.001588 0.001499 0.001523 0.001553
original random 0.001376 0.001288 0.001433 0.00122 0.001425 0.001583 0.001463 0.001414
alter random 0.001486 0.002257 0.001195 0.001239 0.001216 0.001349 0.001182 0.00126
ignore random 0.001546 0.001415 0.001381 0.001347 0.002016 0.001716 0.00145 0.001428

Table 3.3: Training time of KNN regressors. The upper table uses the distance metric,
while the lower one uses the uniform metric.

distance metric. In addition, the KNN surrogates trained on the random dataset perform
better in terms of accuracy and precision.

Training time is constant in k, which is expected, since it just involves putting all the
training samples into a data structure and is not dependent on the value of k. Testing
time however, is dependent on k, and we can see it increases approximately linearly.

Across all sub-models, as the value of k increases up 4, the accuracy and precision
increase. When k is set to 15, performance is less than or equal to the performance for
the previous value of k (10), but not by much. This is expected, as training samples much
further away from the point to approximate will contribute to the approximation. The
peak in performance occurs at k=4, particularly for the surrogates trained on grid data.
This is also expected, as the point will always lie between 4 training points, and more or

15

k 1 2 3 4 5 7 10 15
original grid 0.003515 0.003447 0.003717 0.003754 0.004348 0.004379 0.005117 0.006134
alter grid 0.003288 0.003259 0.003337 0.004016 0.00427 0.004168 0.004696 0.005868
ignore grid 0.003451 0.004333 0.003949 0.005284 0.004207 0.004553 0.005143 0.006578
original random 0.003336 0.003685 0.004048 0.004166 0.004489 0.004845 0.005519 0.006661
alter random 0.003423 0.003615 0.003962 0.004206 0.004347 0.004905 0.005647 0.006792
ignore random 0.00338 0.003633 0.004143 0.004128 0.00434 0.004864 0.005315 0.006915
k 1 2 3 4 5 7 10 15
original grid 0.003331 0.00333 0.003551 0.003449 0.004213 0.004793 0.004585 0.005737
alter grid 0.003944 0.003328 0.003235 0.003464 0.004009 0.004253 0.004801 0.005731
ignore grid 0.003401 0.003468 0.003488 0.003707 0.004128 0.004327 0.004743 0.006326
original random 0.003243 0.003861 0.003735 0.004258 0.004314 0.004648 0.005266 0.006455
alter random 0.003352 0.005378 0.003638 0.003784 0.004103 0.004501 0.005293 0.006112
ignore random 0.003366 0.003624 0.004054 0.003844 0.005741 0.004484 0.005519 0.005919

Table 3.4: Predicting times of KNN in ms. The upper table uses the distance metric,
while the lower one uses the uniform metric.

less neighbours than 4 will cause the weighted average to be skewed in one direction.
The sub-model that the KNN regressor had the most success with is the ignorant

sub-model, followed by the original, then the altered sub-model. See also Figure 3.2 for
visualisations of the approximations.

Random Forest

num trees 1 5 10 20 50 100
original grid 0.96 0.99 0.99 0.99 0.99 0.99
alter grid 0.89 0.94 0.96 0.96 0.96 0.96
ignore grid 0.99 1 1 1 1 1
original random 0.96 0.99 0.99 0.99 0.99 0.99
alter random 0.84 0.89 0.91 0.92 0.92 0.92
ignore random 0.98 0.99 0.99 1 1 1

Table 3.5: R2 of RFR.

num trees 1 5 10 20 50 100
original grid 7.64384e+09 2.89273e+09 2.31284e+09 1.40298e+09 1.11984e+09 1.05823e+09
alter grid 1.253e+10 6.28974e+09 4.72884e+09 4.98014e+09 4.49739e+09 4.54843e+09
ignore grid 8.33569e+08 2.44155e+08 1.55618e+08 1.27832e+08 1.03548e+08 8.67597e+07
original random 8.90851e+09 2.13923e+09 1.96747e+09 1.72835e+09 1.55564e+09 1.53271e+09
alter random 1.82213e+10 1.21795e+10 1.02594e+10 9.48874e+09 9.30552e+09 9.26547e+09
ignore random 1.61599e+09 7.36494e+08 5.18699e+08 4.44397e+08 3.95679e+08 3.51524e+08

Table 3.6: MSE of RFR.

num trees 1 5 10 20 50 100
original grid 0.005672 0.055311 0.121438 0.183823 0.304527 0.469036
alter grid 0.006052 0.084349 0.075368 0.188461 0.278847 0.487295
ignore grid 0.012219 0.058148 0.043622 0.170536 0.353385 0.658575
original random 0.009694 0.031031 0.054756 0.1016 0.236981 0.485082
alter random 0.009146 0.030907 0.059732 0.101097 0.240046 0.482022
ignore random 0.013523 0.033059 0.055161 0.104946 0.3763 0.624334

Table 3.7: Training times of RFR in ms.

The raw random forest regressor (RFR) results are in Tables 3.5 to 3.8. These are
visualised in Figure 3.3.

The RFR surrogates trained on the grid dataset perform slightly better in terms of
accuracy and precision. Both training time and testing time are linear in the number of
trees. This is expected, since there are more trees to train, and more trees to make an
approximation and average.

16

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1: Performance of KNN regression surrogates on the PTOsame model.

17

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Plots of the KNN approximations of the validation data (green), and the
training data (blue). The grid datasets were used for this visualisation. Each row corre-
sponds to a different sub-model; the first is original, followed by altered, then ignorant.
Each column corresponds to different values of k; in the first, it is set to 1, followed by 4,
and finally 15.

num trees 1 5 10 20 50 100
original grid 0.001592 0.012048 0.01197 0.017782 0.03361 0.069045
alter grid 0.00453 0.016638 0.009443 0.01653 0.033832 0.066348
ignore grid 0.004384 0.004616 0.008472 0.045094 0.051173 0.17907
original random 0.004089 0.007867 0.008191 0.018693 0.050657 0.092739
alter random 0.002277 0.005202 0.009017 0.019371 0.049009 0.077156
ignore random 0.002097 0.005218 0.007825 0.020703 0.052509 0.092508

Table 3.8: Testing times of RFR in ms.

The sub-model that this regressor had the most success with is the ignorant sub-model,
followed by the original, and finally, the altered sub-model.

Across all sub-models, as the number of trees increases, the accuracy and precision
increase. This is expected based on the theory behind the approach. However, the
improvement rate quickly decreases, and there is no difference in performance for 20 or
more trees. See also Figure 3.4 for visualisations of the approximations.

18

(a) (b)

(c) (d)

Figure 3.3: Performance of RFR surrogates on the PTOsame model.

num nodes per layers 5 10 20 50 100
original grid 5 -0.15 0.03 0.01 0.02 0.86
original grid 10 0.71 0.79 0.92 0.89 0.95
original grid 20 -0 0.91 0.91 0.86 0.94
alter grid 5 -0.13 0.04 0.05 0.18 0.88
alter grid 10 0.3 0.76 0.86 0.84 0.92
alter grid 20 0.8 0.83 0.88 0.91 0.79
ignore grid 5 -0.2 0 0.02 0.02 0.99
ignore grid 10 0.5 0.79 1 1 1
ignore grid 20 -0 0.99 1 1 1
original random 5 -0.22 -0 0.01 0.53 0.94
original random 10 0.76 0.77 0.98 0.99 0.99
original random 20 0.9 0.99 0.99 0.99 0.98
alter random 5 -0.15 0.03 0.1 0.19 0.89
alter random 10 0.32 0.72 0.93 0.94 0.96
alter random 20 0.81 0.82 0.94 0.95 0.97
ignore random 5 -0.21 -0.01 0.01 0.01 0.99
ignore random 10 0.64 0.68 1 1 1
ignore random 20 -0 0.99 1 1 1

Table 3.9: R2 of MLP with various numbers of layers (specified in first column).

MLP

The raw MLP results are in Tables 3.9 to 3.12. These are visualised in Figure 3.5.
The MLP surrogates trained on the grid dataset perform slightly better in terms of

accuracy and precision. Both training time and testing time are linear in the number of
nodes per layer, as shown by the graphs. However, it is important to know the actual
complexity is also linear in the number of layers as well.

19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Plots of the random forest approximations of the validation data (green),
and the training data (blue). The grid datasets were used for this visualisation. Each
row corresponds to a different sub-model; the first is original, followed by altered, then
ignorant. Each column corresponds to different number of trees; in the first, there is 1,
followed by 10, then 100. We can see the smoothness of the plots increase from left to
right, and the green points (approximations) appearing more equidistant from the blue
points (training data).

This surrogate best approximated the ignorant sub-model, followed by the original,
and finally, the altered sub-model.

Across all sub-models, as the number of nodes in each layer increases, so too does the
accuracy and precision. However, some configurations of number of layers and number
of nodes per layer do not result in significant increases in accuracy and precision when
the number of nodes per layer is increased. See also Figure 3.6 for visualisations of the
approximations.

SVM

The raw SVM results are in Tables 3.13 to 3.16. These are visualised in Figure 3.7.
The SVM surrogates trained on the grid dataset perform slightly better in terms

of accuracy and precision. For the training times, the growth increases with C, when
approximating the original model. For the ignorant model, the training time growth

20

num nodes per layers 5 10 20 50 100
original grid 5 2.39294e+11 2.01667e+11 2.05212e+11 2.04124e+11 2.873e+10
original grid 10 5.97037e+10 4.41498e+10 1.74466e+10 2.3624e+10 1.07633e+10
original grid 20 2.08273e+11 1.80781e+10 1.87061e+10 2.90721e+10 1.19604e+10
alter grid 5 1.25588e+11 1.06804e+11 1.05681e+11 9.09975e+10 1.30486e+10
alter grid 10 7.75311e+10 2.6365e+10 1.56186e+10 1.79391e+10 8.37981e+09
alter grid 20 2.2548e+10 1.9137e+10 1.35192e+10 1.02002e+10 2.31681e+10
ignore grid 5 1.2019e+11 1.00282e+11 9.85828e+10 9.85381e+10 7.34724e+08
ignore grid 10 5.05102e+10 2.14399e+10 4.40544e+08 8.92232e+07 1.54155e+08
ignore grid 20 1.00565e+11 1.36305e+09 2.64615e+08 1.20397e+08 1.34082e+08
original random 5 2.62565e+11 2.15797e+11 2.13906e+11 1.00291e+11 1.31174e+10
original random 10 5.19357e+10 4.88362e+10 4.13454e+09 1.88665e+09 1.26476e+09
original random 20 2.17746e+10 2.58905e+09 2.38425e+09 2.13216e+09 3.64767e+09
alter random 5 1.29721e+11 1.09927e+11 1.01252e+11 9.15376e+10 1.2603e+10
alter random 10 7.64544e+10 3.1176e+10 7.3405e+09 6.40211e+09 4.32406e+09
alter random 20 2.18184e+10 2.02714e+10 6.48499e+09 6.13344e+09 3.4753e+09
ignore random 5 1.2393e+11 1.03672e+11 1.01378e+11 1.01569e+11 1.0645e+09
ignore random 10 3.6624e+10 3.25515e+10 4.94003e+08 3.79261e+08 1.55871e+08
ignore random 20 1.02911e+11 9.83825e+08 5.03994e+08 2.19536e+08 1.69421e+08

Table 3.10: MSE of MLP with various numbers of layers (specified in first column).

num nodes per layers 5 10 20 50 100
original grid 5 1.13132 1.28788 1.62567 2.29416 6.43111
original grid 10 2.00703 2.30235 2.37074 2.58748 6.02778
original grid 20 2.43812 4.03585 4.68558 6.7241 10.5244
alter grid 5 1.50853 1.35542 1.8109 6.53749 14.2515
alter grid 10 2.8082 2.73656 1.81653 2.17356 6.43677
alter grid 20 3.94352 2.62447 3.3053 4.42696 4.76675
ignore grid 5 1.08676 1.2338 1.5621 1.53438 6.41382
ignore grid 10 2.13843 2.33625 2.36547 4.15596 5.7734
ignore grid 20 2.31232 3.15169 4.05574 4.6303 7.61771
original random 5 1.14633 1.30538 1.75803 6.78704 15.2887
original random 10 3.61521 3.32493 3.46077 7.45793 12.8903
original random 20 6.95077 5.86094 8.32976 4.57936 4.98663
alter random 5 1.13404 1.30202 1.86683 3.13329 6.39289
alter random 10 2.0279 2.47492 3.60869 9.52572 18.8993
alter random 20 3.93068 3.36959 7.6448 11.4601 21.753
ignore random 5 1.1281 1.25704 1.53854 1.62059 5.85318
ignore random 10 2.04072 2.30651 2.61077 2.87703 5.88439
ignore random 20 2.26218 3.76167 3.47086 4.65255 6.43583

Table 3.11: Training times of MLP with various numbers of layers (specified in first
column) in ms.

num nodes per layers 5 10 20 50 100
original grid 5 0.000603 0.000903 0.001517 0.00365 0.008255
original grid 10 0.000801 0.001574 0.0032 0.006582 0.061216
original grid 20 0.001358 0.002902 0.018401 0.106137 0.160671
alter grid 5 0.000548 0.004897 0.006359 0.059352 0.037784
alter grid 10 0.000789 0.001538 0.002792 0.007274 0.017855
alter grid 20 0.001442 0.006216 0.005667 0.01401 0.034686
ignore grid 5 0.000569 0.002224 0.001335 0.003148 0.008368
ignore grid 10 0.000815 0.001623 0.002759 0.007046 0.024204
ignore grid 20 0.00141 0.005738 0.005876 0.013202 0.053896
original random 5 0.000665 0.001015 0.002543 0.00793 0.017832
original random 10 0.000844 0.001504 0.009309 0.019832 0.041984
original random 20 0.005239 0.026566 0.019263 0.014728 0.033988
alter random 5 0.00077 0.001096 0.00353 0.004492 0.009771
alter random 10 0.000814 0.002217 0.012238 0.011358 0.039301
alter random 20 0.001434 0.004267 0.017338 0.042809 0.140851
ignore random 5 0.000575 0.000891 0.001311 0.003415 0.007812
ignore random 10 0.000759 0.001602 0.002835 0.011025 0.036706
ignore random 20 0.001435 0.002928 0.005149 0.019722 0.036042

Table 3.12: Testing times of MLP with various numbers of layers (specified in first column)
in ms.

rate is roughly constant. For the altered model, the training time growth rate decreases.
Testing times are constant, since once trained, the SVM is simple mathematic function

21

(a) (b)

(c) (d)

Figure 3.5: Performance of MLP surrogates on the PTOsame model.

C 5e5 1e6 5e6 1e7
original grid 0.7 0.72 0.75 0.77
alter grid 0.77 0.77 0.78 0.78
ignore grid 0.97 0.97 0.98 0.99
original random 0.75 0.78 0.81 0.84
alter random 0.81 0.81 0.82 0.83
ignore random 0.96 0.97 0.98 0.99

Table 3.13: R2 of SVM.

C 5e5 1e6 5e6 1e7
original grid 6.21474e+10 5.92491e+10 5.11408e+10 4.81844e+10
alter grid 2.53475e+10 2.57161e+10 2.44768e+10 2.43387e+10
ignore grid 3.51817e+09 2.75464e+09 1.61033e+09 1.22708e+09
original random 5.44936e+10 4.80552e+10 4.0479e+10 3.54547e+10
alter random 2.16178e+10 2.12082e+10 1.9799e+10 1.90192e+10
ignore random 3.95997e+09 3.10422e+09 1.69121e+09 1.37044e+09

Table 3.14: MSE of SVM.

C 5e5 1e6 5e6 1e7
original grid 1.83465 4.57913 39.2633 225.665
alter grid 2.04234 1.74046 34.336 47.4818
ignore grid 1.30937 4.22366 22.6675 88.9345
original random 2.57153 4.34479 30.3103 164.272
alter random 1.52289 2.91651 24.9734 27.4269
ignore random 1.32607 3.14364 39.5588 98.7242

Table 3.15: Training times of SVM in ms.

22

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.6: Plots of the MLP approximations of the validation data (green), and the
training data (blue). The grid datasets were used for this visualisation. All MLP displayed
have 10 layers. Each row corresponds to a different sub-model; the first is original, followed
by altered, then ignorant. Each column corresponds to different number of of nodes per
layer; in the first, there is 10, followed by 20, then 100. We can see the smoothness of the
plots increase from left to right.

C 5e5 1e6 5e6 1e7
original grid 0.228935 0.067067 0.140404 0.067538
alter grid 0.22615 0.066508 0.132803 0.067334
ignore grid 0.21254 0.065019 0.061428 0.061067
original random 0.226605 0.068069 0.06996 0.067324
alter random 0.231063 0.22952 0.225929 0.228544
ignore random 0.202138 0.061581 0.061489 0.060348

Table 3.16: Testing times of SVM in ms.

that the sample to classify can be given to.
This surrogate best approximated the ignorant sub-model, followed by the altered

sub-model, and finally, the original sub-model. This is different compared to the previous
regression surrogates

Across all sub-models, as the value of C increases, so too does the accuracy and
precision. Recall that C determines the robustness against outliers; the lower the value
of C, the more it ignores outliers and less likely it is to overfit. Since the state-of-the-art

23

(a) (b)

(c) (d)

Figure 3.7: Performance of SVM surrogates on the PTOsame model.

model we are trying to approximate is mathematically based, and therefore completely
accurate, it has no outliers. This is why we chose high values for C, and the reason an
increase in C, causes an increase in performance. See also Figure 3.8 for visualisations of
the approximations.

3.1.2 Comparing approaches

This section shows the surrogates best performing settings for a given sub-model, and
compares them. The best settings for a surrogate were found by ordering them by MSE.
It also gives us an idea of how easy each of the sub-models are to approximate; the
ignorant sub-model has the lowest error, followed by the original, and finally the altered.
This is expected as the smoothness of the sub-models decreases and complexity increases.

Original sub-model

approach and settings MSE variance fitting time predict time
knn distance random k=7 1.32347e+09 0.99 0.001333 0.004845
rfr grid num trees=100 1.05823e+09 0.99 0.469036 0.069045
mlp random num layers=10 num nodes per layer=100 1.26476e+09 0.99 12.8903 0.041984
svm random C=10000000 3.54547e+10 0.84 164.272 0.067324

Table 3.17: Performance of best surrogates of each approach on the original sub-model.

24

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.8: Plots of the SVM approximations of the validation data (green), and the
training data (blue). The grid datasets were used for this visualisation. Each row corre-
sponds to a different sub-model; the first is original, followed by altered, then ignorant.
Each column corresponds to different value of C; in the first, there is 5× 105, followed by
1× 106, then 1× 106, but at a different angle, and finally 1× 107.

The results are depicted in Table 3.17. From there, we can see the best performing
approach by both accuracy and precision was the random forest regressor, followed by
MLP, KNN and then SVM. In addition, 3 out of the 4 surrogates performed better when
trained on the random dataset. In terms of training time, the worst was SVM by far,
followed by MLP. However, prediction times were similar across surrogates.

Ignorant sub-model

approach and settings MSE variance fitting time predict time
knn distance grid k=4 7.65866e+07 1 0.001489 0.005284
rfr grid num trees=100 8.67597e+07 1 0.658575 0.17907
mlp grid num layers=10 num nodes per layer=50 8.92232e+07 1 4.15596 0.007046
svm grid C=10000000 1.22708e+09 0.99 88.9345 0.061067

Table 3.18: Performance of best surrogates of each approach on the ignorant sub-model.

The results are depicted in Table 3.18. In this case, the surrogates trained on the grid
data perform the best. The most accurate and precise approach was KNN, followed by
random forest, MLP, and SVM. Training and prediction times are similar to those for the
original sub-model.

25

Altered sub-model

approach and settings MSE variance fitting time predict time
knn uniform random k=3 4.20432e+09 0.96 0.001195 0.003638
rfr grid num trees=50 4.49739e+09 0.96 0.278847 0.033832
mlp random num layers=20 num nodes per layer=100 3.4753e+09 0.97 21.753 0.140851
svm random C=10000000 1.90192e+10 0.83 27.4269 0.228544

Table 3.19: Performance of best surrogates of each approach on the altered sub-model.

The results are depicted in Table 3.19. The surrogates trained on the random data
perform the best. The most accurate and precise approach was MLP, followed by KNN,
random forest, and SVM. Training and prediction times are similar to those for the original
sub-model. The MLP’s many degrees of freedom that come with the many weights in the
layers, allow it to perform better than other surrogates when approximating the steep
cliff.

3.2 Classification
When classifying feasibility, the original sub-model is the one we consider. We could also
have classified the altered sub-model, since power is the only difference between the sub-
models, and we consider feasibility, which is the same for both. However. the ignorant
sub-model would not be useful, as it removes infeasible samples.

3.2.1 By approach

In the following section, we assess the experiment results by approach, as we did in the
regression section. Some of the performance trends are similar to those seen in regression,
and explanations of these are omitted. Refer to the regression section as appropriate for
explanations.

KNN

k 1 2 3 4 5 7 10 15
original grid 0.99 0.99 1 1 1 1 1 1
original random 0.99 0.99 1 0.99 0.99 1 1 1
k 1 2 3 4 5 7 10 15
original grid 0.99 0.99 1 1 1 1 1 1
original random 0.99 0.99 1 0.99 0.99 1 0.99 1

Table 3.20: R2 of KNN regressors. The upper table uses the distance metric, while the
lower one uses the uniform metric.

k 1 2 3 4 5 7 10 15
original grid 0.01 0.01 0 0 0 0 0 0
original random 0.01 0.01 0 0.01 0.01 0 0 0
k 1 2 3 4 5 7 10 15
original grid 0.01 0.01 0 0 0 0 0 0
original random 0.01 0.01 0 0.01 0.01 0 0.01 0

Table 3.21: MSE of KNN in ms. The upper table uses the distance metric, while the
lower one uses the uniform metric.

26

k 1 2 3 4 5 7 10 15
original grid 0.001884 0.001968 0.001962 0.001575 0.001763 0.001656 0.001383 0.002018
original random 0.001551 0.001524 0.001532 0.001511 0.001725 0.001483 0.0024 0.002258
k 1 2 3 4 5 7 10 15
original grid 0.001817 0.001483 0.001464 0.001538 0.001495 0.001501 0.001511 0.001502
original random 0.001624 0.001345 0.001551 0.001498 0.001454 0.001701 0.001513 0.0015

Table 3.22: Training time of KNN regressors. The upper table uses the distance metric,
while the lower one uses the uniform metric.

k 1 2 3 4 5 7 10 15
original grid 0.005084 0.005302 0.004714 0.004065 0.007347 0.005582 0.007162 0.007623
original random 0.003475 0.003832 0.004056 0.004297 0.004779 0.005236 0.006037 0.008015
k 1 2 3 4 5 7 10 15
original grid 0.00388 0.003788 0.003885 0.004074 0.004471 0.004919 0.005389 0.006453
original random 0.003878 0.003963 0.004794 0.004098 0.004819 0.005018 0.005664 0.007032

Table 3.23: Predicting times of KNN in ms. The upper table uses the distance metric,
while the lower one uses the uniform metric.

The raw KNN results are in Tables 3.20 to 3.23. These are visualised in Figure 3.9.
When comparing training on the grid or random datasets, the grid datasets perform
slightly better for some larger values of k, in terms of accuracy and precision. When
comparing performance of surrogates using the distance metric or the uniform metric,
the only case in which the distance metric performs better is when k=10. However, it is
important to note that all precision errors are less than or equal to 0.01, and all accuracy
values exceed 0.99.

The slight trends in accuracy and precision and k is similar to those in regression;
there is a peak around 3 and then it drops and increases again. Note the accuracy and
precision already start quite high, so there is little room for improvement.

Training time is constant in k, as with regression. Testing time however, is dependent
on k, and we can see it increases approximately linearly, as with regression. See also
Figure 3.10 for visualisations of the classifications.

Random Forest

num trees 1 5 10 20 50 100
original grid 0.99 0.99 0.99 0.99 1 1
original random 0.99 0.99 0.99 0.99 1 1

Table 3.24: R2 of RFR.

num trees 1 5 10 20 50 100
original grid 0.01 0.01 0.01 0.01 0 0
original random 0.01 0.01 0.01 0.01 0 0

Table 3.25: MSE of RFR.

num trees 1 5 10 20 50 100
original grid 0.005678 0.041603 0.074327 0.144531 0.187692 0.370053
original random 0.004899 0.017483 0.035715 0.072112 0.180737 0.374436

Table 3.26: Training times of RFR in ms.

The raw random forest regressor (RFR) results are in Tables 3.24 to 3.27. These are
visualised in Figure 3.11.

27

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.9: Performance of KNN regression surrogates on the PTOsame model.

28

(a) (b) (c)

Figure 3.10: Plots of the KNN classifications of the validation data (orange if correctly
classified, red if incorrectly classified), and the training data (yellow if feasible, green if
infeasible). The grid datasets were used for this visualisation. Each column corresponds
to different value of K; in the first, there is 1, followed by 3, then 7.

num trees 1 5 10 20 50 100
original grid 0.001852 0.013712 0.007468 0.01491 0.032168 0.060786
original random 0.00164 0.004796 0.007725 0.014077 0.039337 0.063883

Table 3.27: Testing times of RFR in ms.

(a) (b)

(c) (d)

Figure 3.11: Performance of RFR surrogates on the PTOsame model.

The RFR surrogates trained on the grid dataset or random data set perform the same,
in terms of accuracy and precision. The runtimes for both are similar.

As the number of trees increases, the accuracy and precision increase, as with regres-

29

(a) (b) (c)

Figure 3.12: Plots of the random forest classifications of the validation data (orange if
correctly classified, red if incorrectly classified), and the training data (yellow if feasible,
green if infeasible). The grid datasets were used for this visualisation. Each column
corresponds to different numbers of trees; in the first, there is 1, followed by 5, then 20.

sion. However, the trend is slight, as with KNN when classifying, as the precision and
accuracy are already high for a small number of trees. Both training time and testing time
are linear in the number of trees, as with regression. See also Figure 3.12 for visualisations
of the classifications.

MLP

num nodes per layer 5 10 20 50 100
original grid 5 1 1 1 1 0.99
original grid 10 1 1 1 1 0.99
original grid 20 0.95 1 1 0.99 0.99
original random 5 0.99 1 1 0.98 1
original random 10 1 1 1 0.99 1
original random 20 0.95 0.99 0.99 0.99 0.99

Table 3.28: R2 of MLP with various numbers of layers (specified in first column).

num nodes per layer 5 10 20 50 100
original grid 5 0 0 0 0 0.01
original grid 10 0 0 0 0 0.01
original grid 20 0.05 0 0 0.01 0.01
original random 5 0.01 0 0 0.02 0
original random 10 0 0 0 0.01 0
original random 20 0.05 0.01 0.01 0.01 0.01

Table 3.29: MSE of MLP with various numbers of layers (specified in first column).

num nodes per layer 5 10 20 50 100
original grid 5 1.17321 0.703144 0.476445 0.560678 1.25484
original grid 10 1.02293 0.934789 0.565577 1.86965 3.07215
original grid 20 0.704494 1.70507 1.54192 1.43353 2.60192
original random 5 1.21675 0.64858 0.405209 0.460994 1.0156
original random 10 1.1043 1.16102 0.759024 0.774866 1.31842
original random 20 0.694574 1.19609 1.56808 1.38738 2.49439

Table 3.30: Training times of MLP with various numbers of layers (specified in first
column) in ms.

The raw MLP results are in Tables 3.28 to 3.31. These are visualised in Figure 3.13.

30

num nodes per layer 5 10 20 50 100
original grid 5 0.000596 0.000945 0.001964 0.003492 0.01907
original grid 10 0.000909 0.001343 0.002268 0.014631 0.034571
original grid 20 0.00146 0.006437 0.007369 0.01385 0.037102
original random 5 0.000677 0.001057 0.001988 0.003757 0.009085
original random 10 0.000874 0.001332 0.002397 0.007346 0.016844
original random 20 0.001481 0.002455 0.00513 0.013837 0.041012

Table 3.31: Testing times of MLP with various numbers of layers (specified in first column)
in ms.

(a) (b)

(c) (d)

Figure 3.13: Performance of MLP surrogates on the PTOsame model.

The MLP surrogates trained on the grid dataset perform slightly better in terms of
accuracy and precision, but they are comparable. Both training time and testing time
are linear in the number of nodes per layer, as with regression.

In regard to the number of nodes in each layer, the accuracy and precision peak at
around 10 to 20 nodes per layer. This is likely due to overfitting when more nodes are
used. See also Figure 3.14 for visualisations of the classifications.

SVM

C 10000 100000 1000000 10000000
original grid 1 1 1 1
original random 1 1 1 1

Table 3.32: R2 of SVM.

31

(a) (b) (c)

Figure 3.14: Plots of the MLP classifications of the validation data (orange if correctly
classified, red if incorrectly classified), and the training data (yellow if feasible, green
if infeasible). The grid datasets were used for this visualisation. All MLP surrogates
displayed have 5 layers. Each column corresponds to different numbers of nodes per layer;
the first has 10, followed by 20, then 100.

C 10000 100000 1000000 10000000
original grid 0 0 0 0
original random 0 0 0 0

Table 3.33: MSE of SVM.

C 10000 100000 1000000 10000000
original grid 0.020391 0.018388 0.018557 0.018487
original random 0.01547 0.013892 0.015212 0.013935

Table 3.34: Training times of SVM in ms.

C 10000 100000 1000000 10000000
original grid 0.001704 0.001642 0.001773 0.001858
original random 0.001244 0.001282 0.001298 0.001236

Table 3.35: Testing times of SVM in ms.

(a) (b)

Figure 3.15: Performance of SVM surrogates on the PTOsame model.

The raw SVM results are in Tables 3.32 to 3.35. Only the runtimes are visualised in
Figure 3.15.

All SVM classifiers with various C achieved perfect precision and accuracy. Both the
training times and testing times are constant in C. See Figure 3.16 for visualisations of
the classifications.

32

(a)

Figure 3.16: Plots of the SVM classifications of the validation data (orange if correctly
classified, red if incorrectly classified), and the training data (yellow if feasible, green if
infeasible). The grid datasets were used for this visualisation. All values of C resulted in
the same classifications.

3.2.2 Comparing approaches

approach and settings MSE variance fitting time predict time
knn uniform grid k=3 0 1 0.001464 0.003885
rfr grid num trees=50 0 1 0.187692 0.032168
mlp grid num layers=5 num nodes per layer=5 0 1 1.17321 0.000596
svm grid C=10000 0 1 0.020391 0.001704

Table 3.36: Performance of best surrogates of each approach.

As mentioned previously, we only approximate the original sub-model. The results can
be found in Table 3.36. There we see that all surrogates, when using the best settings,
achieve perfect accuracy and precision. All fitting and predicting times are comparable.

33

Chapter 4

Approximating Power Absorption of
Arrays of WEC with individual PTO
Settings

In this chapter, we look at the performance of each surrogate for both regression and
classification on the PTOindiv model. The metrics are the same as in the previous chapter.

4.1 Regression
Below are the results when trying to approximate all 3 sub-models, with various surro-
gates.

4.1.1 By approach

KNN

k 1 2 3 4 5 7 10 15
original grid 0.7 0.73 0.76 0.78 0.76 0.73 0.71 0.71
alter grid 0.6 0.66 0.73 0.76 0.73 0.69 0.67 0.67
ignore grid 0.8 0.83 0.83 0.83 0.82 0.82 0.82 0.82
original random 0.39 0.57 0.62 0.64 0.65 0.66 0.67 0.66
alter random 0.08 0.35 0.43 0.47 0.48 0.5 0.51 0.5
ignore random 0.69 0.8 0.83 0.85 0.86 0.86 0.86 0.86
k 1 2 3 4 5 7 10 15
original grid 0.7 0.73 0.76 0.77 0.74 0.71 0.69 0.7
alter grid 0.6 0.66 0.73 0.74 0.71 0.66 0.64 0.65
ignore grid 0.8 0.83 0.82 0.82 0.82 0.82 0.82 0.81
original random 0.39 0.56 0.61 0.63 0.65 0.66 0.66 0.66
alter random 0.08 0.34 0.42 0.46 0.47 0.49 0.5 0.49
ignore random 0.69 0.8 0.83 0.84 0.85 0.86 0.86 0.85

Table 4.1: R2 of KNN regressors. The upper table uses the distance metric, while the
lower one uses the uniform metric.

The raw KNN results are in Tables 4.1 to 4.4. These are visualised in Figure 4.1. There
isn’t a large disparity between the surrogates using the distance weighting compared to
the uniform weighting, though the distance metric is slightly better, as it was when
approximating the PTOsame model.

Training time is constant in k, and testing time is linear in k, as it was with the
PTOsame model.

34

k 1 2 3 4 5 7 10 15
original grid 1.24107e10 1.13505e10 9.96254e9 9.30821e9 1.00307e10 1.11268e10 1.19381e10 1.19489e10
alter grid 2.454e10 2.0733e10 1.63091e10 1.45883e10 1.60989e10 1.85356e10 2.01107e10 2.0217e10
ignore grid 8.05377e9 7.11374e9 7.06364e9 6.91478e9 7.13934e9 7.24377e9 7.21462e9 7.41612e9
original random 4.36651e10 3.09726e10 2.74873e10 2.5756e10 2.48314e10 2.40554e10 2.37825e10 2.40517e10
alter random 6.83335e10 4.85439e10 4.23357e10 3.97844e10 3.85267e10 3.72096e10 3.66805e10 3.7016e10
ignore random 8.40183e9 5.47637e9 4.53573e9 4.13861e9 3.92787e9 3.72109e9 3.6941e9 3.83715e9
k 1 2 3 4 5 7 10 15
original grid 1.24107e10 1.13505e10 1.00851e10 9.67918e9 1.07067e10 1.20099e10 1.27596e10 1.24874e10
alter grid 2.454e10 2.0733e10 1.65678e10 1.55001e10 1.76018e10 2.04569e10 2.18067e10 2.13706e10
ignore grid 8.05377e9 7.11374e9 7.15917e9 7.11438e9 7.41543e9 7.49317e9 7.38014e9 7.53033e9
original random 4.36651e10 3.11855e10 2.78329e10 2.6136e10 2.52405e10 2.45107e10 2.42746e10 2.45892e10
alter random 6.83335e10 4.89459e10 4.27955e10 4.0329e10 3.91367e10 3.78762e10 3.73969e10 3.78124e10
ignore random 8.40183e9 5.57407e9 4.64682e9 4.26135e9 4.05785e9 3.85776e9 3.84785e9 4.01348e9

Table 4.2: MSE of KNN in ms. The upper table uses the distance metric, while the lower
one uses the uniform metric.

k 1 2 3 4 5 7 10 15
original grid 0.568326 0.566752 0.569379 0.570734 0.589429 0.569621 0.562823 0.643006
alter grid 0.570077 0.542975 0.539788 0.542766 0.55781 0.544841 0.543328 0.538397
ignore grid 0.27196 0.273296 0.263386 0.265752 0.256417 0.25355 0.280436 0.286804
original random 0.178001 0.162985 0.17932 0.16239 0.158882 0.155285 0.150468 0.150177
alter random 0.185248 0.155642 0.163516 0.152239 0.154827 0.144981 0.182292 0.168721
ignore random 0.144506 0.148761 0.12933 0.17538 0.145261 0.141728 0.133345 0.130344
k 1 2 3 4 5 7 10 15
original grid 0.550793 0.562233 0.563579 0.569762 0.566039 0.563299 0.573152 0.563819
alter grid 0.580746 0.574492 0.570568 0.536818 0.551801 0.537634 0.573264 0.533546
ignore grid 0.250488 0.267567 0.266577 0.276841 0.275514 0.272745 0.271444 0.265103
original random 0.185477 0.193783 0.181851 0.170315 0.169567 0.163685 0.161948 0.170302
alter random 0.153918 0.177575 0.177419 0.17879 0.190427 0.172294 0.176629 0.173302
ignore random 0.134419 0.130394 0.144958 0.131171 0.133648 0.146501 0.131114 0.127096

Table 4.3: Training time of KNN regressors. The upper table uses the distance metric,
while the lower one uses the uniform metric.

k 1 2 3 4 5 7 10 15
original grid 5.84546 6.01509 6.83683 9.33861 12.0302 11.3855 11.8065 12.2284
alter grid 5.81105 5.97373 6.86082 9.31841 11.3173 11.333 12.005 12.18
ignore grid 4.87106 5.03382 6.6224 8.62464 9.365 9.57345 10.0276 10.5153
original random 5.32886 7.35426 8.48218 8.93328 9.80013 10.9362 12.5509 14.5269
alter random 5.97034 7.71617 7.78287 8.71848 9.80329 10.993 18.9494 20.2217
ignore random 4.28692 5.05943 5.79354 7.20465 7.92758 9.49188 9.56854 10.7764
k 1 2 3 4 5 7 10 15
original grid 5.79381 6.0031 6.83393 9.32618 11.1408 11.4016 11.594 12.1368
alter grid 5.78197 5.99227 6.82167 9.30563 11.0706 11.361 11.6345 11.9363
ignore grid 4.49933 4.84903 6.09515 8.98017 9.12933 9.34446 9.53268 10.2404
original random 7.40443 9.73348 10.8984 11.5555 9.75052 12.4954 14.2054 15.6363
alter random 5.4918 7.43429 8.1023 9.2243 10.9648 11.4665 13.7523 15.185
ignore random 3.99444 5.42671 6.19026 7.1388 8.2663 9.04232 10.3495 12.467

Table 4.4: Predicting times of KNN in ms. The upper table uses the distance metric,
while the lower one uses the uniform metric.

Across all sub-models, as the value of k increases up to a point, the accuracy and pre-
cision increase. When k is set to 15, performance is less than or equal to the performance
for the previous value of k (10), but not by much. This is expected, as training samples
much further away from the point to approximate will contribute to the approximation.
There is a peak in performance at k=4, particularly for the surrogates trained on grid
data, as with the PTOsame model. The peaks for the random data appear at around
k=10. This is because of the higher dimensional space that the points exist in; we need
more neighbours in order for the resulting power to not be skewed in one dimension.

The sub-model that the KNN regressor had the most success with is the ignorant
sub-model, as with the PTOsame model.

35

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Performance of KNN regression surrogates on the PTOindiv model.

36

Random Forest

num trees 1 5 10 20 50 100
original grid 0.88 0.89 0.89 0.89 0.89 0.89
alter grid 0.72 0.73 0.73 0.73 0.73 0.73
ignore grid 0.87 0.89 0.89 0.89 0.89 0.89
original random 0.66 0.85 0.88 0.89 0.9 0.9
alter random 0.65 0.83 0.85 0.86 0.87 0.87
ignore random 0.68 0.88 0.9 0.92 0.92 0.92

Table 4.5: R2 of RFR.

num trees 1 5 10 20 50 100
original grid 5.07919e+09 4.64168e+09 4.60884e+09 4.56122e+09 4.56976e+09 4.5654e+09
alter grid 1.67868e+10 1.63301e+10 1.62687e+10 1.62384e+10 1.62101e+10 1.6206e+10
ignore grid 5.1149e+09 4.61757e+09 4.53606e+09 4.50566e+09 4.47553e+09 4.46791e+09
original random 2.46367e+10 1.05795e+10 8.8107e+09 7.89957e+09 7.33555e+09 7.1085e+09
alter random 2.62914e+10 1.25926e+10 1.08524e+10 1.01162e+10 9.65361e+09 9.56546e+09
ignore random 8.85889e+09 3.28787e+09 2.62165e+09 2.31897e+09 2.1271e+09 2.05818e+09

Table 4.6: MSE of RFR.

num trees 1 5 10 20 50 100
original grid 0.201784 0.76741 1.42661 2.88161 7.39967 14.8157
alter grid 0.217717 0.655286 1.31034 2.57029 6.48872 12.4097
ignore grid 0.144887 0.546366 1.12368 2.15438 5.24833 10.6879
original random 0.696134 3.25916 6.426 13.5476 32.5941 66.2652
alter random 0.742124 3.44088 7.11721 13.3224 33.5619 66.1411
ignore random 0.536155 2.55839 5.36377 10.0812 24.8115 50.2532

Table 4.7: Training times of RFR in ms.

num trees 1 5 10 20 50 100
original grid 0.05716 0.113602 0.168912 0.299709 0.692808 2.43139
alter grid 0.065095 0.1032 0.195944 0.288331 0.577283 1.03815
ignore grid 0.049466 0.094716 0.165032 0.24896 0.535664 1.07542
original random 0.083092 0.205781 0.328623 0.609478 1.47084 3.03617
alter random 0.072603 0.168479 0.26853 0.484716 1.15009 2.20084
ignore random 0.058948 0.141848 0.258347 0.412792 1.00858 1.93987

Table 4.8: Testing times of RFR in ms.

The raw random forest regressor (RFR) results are in Tables 4.5 to 4.8. These are
visualised in Figure 4.2.

Across all sub-models, as the number of trees increases, the accuracy and precision
increase. This is expected based on the theory behind the approach. However, the
improvement rate quickly decreases, and there is not much performance disparity for
greater than 10 trees. Furthermore, there is no increase in accuracy for 50 or more trees.

The RFR surrogates trained on the random dataset have a better increase in perfor-
mance (accuracy and precision) as the number of trees increases when compared to those
trained on the grid dataset.

Both training time and testing time are linear in the number of trees, as with the
PTOsame model.

The sub-model that this regressor had the most success with is the ignorant sub-model,
followed by the original, and finally, the altered sub-model.

37

(a) (b)

(c) (d)

Figure 4.2: Performance of RFR surrogates on the PTOindiv model.

num nodes per layers 5 10 20 50 100
original grid 5 0.09 0.09 0.75 0.85 0.85
original grid 10 0.26 0.67 0.85 0.85 0.86
original grid 20 -0.01 0.83 0.86 0.84 0.86
original grid 30 -0.01 0.75 0.83 0.79 0.84
alter grid 5 -0.01 -0.03 -0.42 0.57 0.59
alter grid 10 -0.09 0.07 0.76 0.61 0.82
alter grid 20 -0.04 0.49 0.7 0.7 0.62
alter grid 30 -0.04 0.44 0.74 0.68 0.51
ignore grid 5 0.07 0.08 0.75 0.87 0.85
ignore grid 10 0.49 0.58 0.87 0.85 0.86
ignore grid 20 0.26 0.77 0.83 0.84 0.86
ignore grid 30 -0 0.76 0.83 0.82 0.85
original random 5 0.03 0.03 0.03 0.97 0.96
original random 10 0.22 0.46 0.94 0.98 0.98
original random 20 -0 0.84 0.93 0.97 0.95
original random 30 -0 0.83 0.94 0.96 0.96
alter random 5 0.08 0.08 0.65 0.81 0.89
alter random 10 0.26 0.6 0.87 0.87 0.89
alter random 20 0.31 0.58 0.88 0.9 0.89
alter random 30 -0 0.69 0.9 0.87 0.89
ignore random 5 0.01 0.01 0.9 0.98 1
ignore random 10 0.22 0.66 0.96 0.97 0.99
ignore random 20 -0 0.89 0.99 0.99 0.98
ignore random 30 -0 0.81 0.98 0.99 0.97

Table 4.9: R2 of MLP with various numbers of layers (specified in first column).

MLP

The raw MLP results are in Tables 4.9 to 4.12. These are visualised in Figure 4.3.

38

num nodes per layers 5 10 20 50 100
original grid 5 3.78052e+10 3.77344e+10 1.02513e+10 6.43484e+09 6.08582e+09
original grid 10 3.06631e+10 1.38241e+10 6.29317e+09 6.33701e+09 6.00875e+09
original grid 20 4.21469e+10 7.02344e+09 6.01832e+09 6.82331e+09 5.8697e+09
original grid 30 4.20482e+10 1.04068e+10 6.90021e+09 8.86907e+09 6.54052e+09
alter grid 5 6.12076e+10 6.23281e+10 8.65035e+10 2.58498e+10 2.46468e+10
alter grid 10 6.61898e+10 5.64941e+10 1.45178e+10 2.39765e+10 1.10008e+10
alter grid 20 6.29605e+10 3.09283e+10 1.84818e+10 1.83667e+10 2.30521e+10
alter grid 30 6.28834e+10 3.37889e+10 1.6058e+10 1.91652e+10 2.98589e+10
ignore grid 5 3.76034e+10 3.75957e+10 1.01009e+10 5.23944e+09 5.97691e+09
ignore grid 10 2.05321e+10 1.70562e+10 5.34941e+09 6.12782e+09 5.525e+09
ignore grid 20 3.00258e+10 9.30194e+09 6.8952e+09 6.51672e+09 5.89231e+09
ignore grid 30 4.07292e+10 9.70201e+09 6.87766e+09 7.15589e+09 5.97142e+09
original random 5 6.91272e+10 6.9181e+10 6.92914e+10 2.37056e+09 3.13527e+09
original random 10 5.57412e+10 3.88042e+10 4.16028e+09 1.41697e+09 1.28462e+09
original random 20 7.1585e+10 1.16782e+10 4.70864e+09 1.97033e+09 3.58683e+09
original random 30 7.15867e+10 1.19937e+10 4.53898e+09 3.15834e+09 3.13206e+09
alter random 5 6.85851e+10 6.85742e+10 2.57777e+10 1.44714e+10 7.85333e+09
alter random 10 5.53154e+10 3.01115e+10 1.00182e+10 9.71173e+09 8.24052e+09
alter random 20 5.1216e+10 3.15497e+10 8.96838e+09 7.59641e+09 8.28987e+09
alter random 30 7.43811e+10 2.31647e+10 7.33759e+09 9.95089e+09 8.53794e+09
ignore random 5 2.69663e+10 2.69658e+10 2.74148e+09 4.23814e+08 8.98119e+07
ignore random 10 2.11818e+10 9.34452e+09 1.21216e+09 7.56092e+08 3.83444e+08
ignore random 20 2.73211e+10 3.1084e+09 3.85575e+08 1.50943e+08 5.08294e+08
ignore random 30 2.73228e+10 5.16568e+09 4.27999e+08 2.02722e+08 9.04811e+08

Table 4.10: MSE of MLP with various numbers of layers (specified in first column).

num nodes per layers 5 10 20 50 100
original grid 5 34.1325 31.2733 472.424 842.945 941.627
original grid 10 56.0679 82.8897 369.538 1278.53 1012.52
original grid 20 18.6754 569.332 837.088 331.123 853.822
original grid 30 72.4169 303.843 351.608 434.267 340.846
alter grid 5 68.1349 67.6928 473.385 568.054 294.299
alter grid 10 144.894 156.003 380.112 238.788 428.067
alter grid 20 16.885 209.58 731.483 207.952 327.515
alter grid 30 114.346 158.095 325.939 344.238 539.077
ignore grid 5 15.8412 14.2907 146.657 120.825 154.623
ignore grid 10 62.011 60.7221 100.253 44.4589 89.5415
ignore grid 20 33.4368 136.978 115.159 125.122 135.705
ignore grid 30 50.5847 132.69 95.7118 81.7195 110.832
original random 5 27.6446 25.6622 24.9502 933.002 1452.89
original random 10 106.423 279.161 494.719 1129.06 2317.01
original random 20 14.4323 377.239 428.581 2237.29 775.611
original random 30 142.162 490.933 855.583 1505.25 1238.47
alter random 5 24.6806 33.0212 489.694 396.603 1069.05
alter random 10 306.644 284.423 260.937 372.574 977.292
alter random 20 182.791 195.099 676.151 1413.77 1197.43
alter random 30 126.089 335.68 1241.03 1605.36 2051.28
ignore random 5 7.75703 8.55562 118.739 122.372 278.531
ignore random 10 50.334 163.231 99.7826 239.668 344.404
ignore random 20 5.89693 146.183 282.601 97.4504 140.332
ignore random 30 49.3983 88.6905 156.334 161.193 143.052

Table 4.11: Training times of MLP with various numbers of layers (specified in first
column) in ms.

The MLP surrogates trained on the grid dataset perform slightly better in terms of
accuracy and precision. Both training time and testing time are linear in the number of
nodes per layer, as shown by the graphs, as with the PTOsame model.

This surrogate best approximated the ignorant sub-model, followed by the original,
and finally, the altered sub-model.

Across all sub-models, as the number of nodes in each layer increases, so too does the
accuracy and precision. However, some configurations of number of layers and number of
nodes per layer to not result in significant increases in accuracy and precision when the
number of nodes per layer is increased.

The MLP regressor is prone to overfitting. Consider for example the R2 of the MLP

39

num nodes per layers 5 10 20 50 100
original grid 5 0.036641 0.107019 0.729677 2.6989 7.53933
original grid 10 0.140285 0.78556 1.89934 8.25969 26.3505
original grid 20 0.19294 1.2203 3.21047 6.37275 9.53987
original grid 30 0.133366 1.40973 4.62041 2.56611 9.5443
alter grid 5 0.128472 0.368235 0.670431 2.57432 7.64013
alter grid 10 0.209381 0.800362 1.94215 0.980079 4.93754
alter grid 20 0.211439 1.32801 4.91054 2.47458 8.10823
alter grid 30 0.286467 0.81597 5.27002 3.04842 11.6736
ignore grid 5 0.020494 0.06789 0.172078 0.723508 2.03347
ignore grid 10 0.046825 0.240458 0.584301 0.315724 0.795353
ignore grid 20 0.08554 0.382402 1.42722 3.86009 4.47466
ignore grid 30 0.223625 0.613518 1.24874 0.96095 7.48051
original random 5 0.03973 0.149165 0.174436 2.43626 5.778
original random 10 0.110337 0.702319 1.51649 6.36162 23.3873
original random 20 0.161434 1.308 4.40915 19.985 6.02768
original random 30 0.901517 2.00715 6.33292 19.4132 5.68078
alter random 5 0.081493 0.332485 0.915917 2.58996 7.07269
alter random 10 0.202835 0.705126 1.67552 7.1121 24.0158
alter random 20 0.39113 1.32648 4.81347 19.1056 55.0744
alter random 30 0.707571 1.89664 6.3476 23.1924 101.246
ignore random 5 0.023603 0.120255 0.195697 0.700106 1.99808
ignore random 10 0.048605 0.247311 0.518466 2.54806 8.81281
ignore random 20 0.053158 0.396992 1.19894 0.638236 1.674
ignore random 30 0.165294 0.550224 1.97903 0.979731 5.09982

Table 4.12: Testing times of MLP with various numbers of layers (specified in first column)
in ms.

(a) (b)

(c) (d)

Figure 4.3: Performance of MLP surrogates on the PTOindiv model.

training on the altered using grid data, using 30 layers in the MLP; the accuracy peaks
when the number of nodes in each layer is 20. Similar cases can also be found in Table

40

4.9.

4.1.2 Comparing approaches

This section shows the surrogates best performing settings for a given sub-model, and
compares them. As with the PTOsame model, the easiest sub-model to approximate was
the ignorant sub-model, followed by the original, and then the altered. For all of the
sub-models, the most accurate and precise surrogate was the MLP, followed by random
forest, and finally KNN. MLP is the best again, likely due to it’s many degrees of freedom,
especially useful in this higher dimensional space.

Original sub-model

approach and settings MSE variance fitting time predict time
knn distance grid k=4 9.30821e+09 0.78 0.570734 9.33861
rfr grid num trees=20 4.56122e+09 0.89 2.88161 0.299709
mlp random num layers=10 num nodes per layer=100 1.28462e+09 0.98 2317.01 23.3873

Table 4.13: Performance of best surrogates of each approach on the original sub-model.

The results are depicted in Table 3.17. 2 out of the 3 surrogates performed better when
trained on the grid dataset. However, the best performing surrogate (MLP) was trained
on the random dataset. In terms of runtime, the slowest was MLP, but, it performs the
best, and the prediction time for all validation samples is still within milliseconds.

Ignorant sub-model

approach and settings MSE variance fitting time predict time
knn distance random k=10 3.6941e+09 0.86 0.133345 9.56854
rfr random num trees=100 2.05818e+09 0.92 50.2532 1.93987
mlp random num layers=5 num nodes per layer=100 8.98119e+07 1 278.531 1.99808

Table 4.14: Performance of best surrogates of each approach on the ignorant sub-model.

The results are depicted in Table 3.18. In this case, the surrogates trained on the
random data perform the best. The MLP has fewer nodes for the ignorant model than
the original model, so prediction time is comparable to the other surrogates. Training time
is still slower, but recall we are interested in beating the state-of-the-art model prediction
time, so training time is less important.

Altered sub-model

approach and settings MSE variance fitting time predict time
knn distance grid k=4 1.45883e+10 0.76 0.542766 9.31841
rfr random num trees=100 9.56546e+09 0.87 66.1411 2.20084
mlp random num layers=30 num nodes per layer=20 7.33759e+09 0.9 1241.03 6.3476

Table 4.15: Performance of best surrogates of each approach on the altered sub-model.

The results are depicted in Table 3.19. The training times of MLP are far worse than
the other surrogates. However, prediction times are comparable across approaches. The
two best surrogates for this sub-model were both trained on the random dataset.

41

4.2 Classification
As in the previous chapter, we consider classifying the original sub-model.

4.2.1 By approach

KNN

k 1 2 3 4 5 7 10 15
original grid 0.94 0.87 1 1 0.99 0.99 1 1
original random 0.88 0.88 0.9 0.9 0.91 0.91 0.92 0.91
k 1 2 3 4 5 7 10 15
original grid 0.94 0.87 1 0.95 0.99 0.99 0.98 1
original random 0.88 0.87 0.9 0.9 0.91 0.91 0.92 0.91

Table 4.16: R2 of KNN regressors. The upper table uses the distance metric, while the
lower one uses the uniform metric.

k 1 2 3 4 5 7 10 15
original grid 0.06 0.13 0 0 0.01 0.01 0 0
original random 0.12 0.12 0.1 0.1 0.09 0.09 0.08 0.09
k 1 2 3 4 5 7 10 15
original grid 0.06 0.13 0 0.05 0.01 0.01 0.02 0
original random 0.12 0.13 0.1 0.1 0.09 0.09 0.08 0.09

Table 4.17: MSE of KNN in ms. The upper table uses the distance metric, while the
lower one uses the uniform metric.

k 1 2 3 4 5 7 10 15
original grid 0.788818 0.589703 0.947651 1.04882 0.666512 1.58263 1.02418 0.700085
original random 0.234229 0.356449 0.173214 0.306106 0.294727 0.431518 0.186965 0.269616
k 1 2 3 4 5 7 10 15
original grid 0.589609 0.548593 0.534803 0.531672 0.529308 0.530205 0.532592 0.53386
original random 0.250505 0.187973 0.222601 0.220832 0.34436 0.17531 0.290727 0.342471

Table 4.18: Training time of KNN regressors. The upper table uses the distance metric,
while the lower one uses the uniform metric.

k 1 2 3 4 5 7 10 15
original grid 9.97197 9.28824 10.5266 15.6886 17.1014 18.3018 16.9544 19.7655
original random 9.36913 16.5803 13.9828 16.0773 19.0071 19.5132 23.712 28.8204
k 1 2 3 4 5 7 10 15
original grid 5.87339 5.91036 6.67761 8.87527 10.8543 10.9453 11.2046 11.4808
original random 10.2391 12.1528 14.1633 17.3348 17.7454 19.2503 23.8036 25.7417

Table 4.19: Predicting times of KNN in ms. The upper table uses the distance metric,
while the lower one uses the uniform metric.

The raw KNN results are in Tables 4.16 to 4.19. These are visualised in Figure 4.4.
When comparing training on the grid or random datasets, the grid datasets perform
slightly better, in terms of accuracy and precision. When comparing performance of
surrogates using the distance metric is also slightly better than the uniform metric. These
are the same patterns seen when classifying the PTOsame model.

Training time is constant in k, as with regression. Testing time is linear in k, as with
regression.

42

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Performance of KNN regression surrogates on the PTOindiv model.

43

There is a slight trend in accuracy and precision; they increase slightly as k increases.
Note the accuracy and precision already start quite high, so there is little room for im-
provement. The accuracy and precision peak at around k=3, 4, and k=10, 15 for the
distance metric.

Random Forest

num trees 1 5 10 20 50 100
original grid 0.91 0.93 0.92 0.91 0.91 0.91
original random 0.95 0.97 0.98 0.98 0.98 0.99

Table 4.20: R2 of RFR.

num trees 1 5 10 20 50 100
original grid 0.09 0.07 0.08 0.09 0.09 0.09
original random 0.05 0.03 0.02 0.02 0.02 0.01

Table 4.21: MSE of RFR.

num trees 1 5 10 20 50 100
original grid 0.098114 0.353793 0.479375 1.02072 1.9987 4.82449
original random 0.248677 1.25062 2.50751 5.61306 13.2223 27.858

Table 4.22: Training times of RFR in ms.

num trees 1 5 10 20 50 100
original grid 0.019132 0.042562 0.08073 0.161043 0.513603 0.846903
original random 0.034289 0.072012 0.13616 0.245265 0.754791 2.02057

Table 4.23: Testing times of RFR in ms.

The raw random forest regressor (RFR) results are in Tables 4.20 to 4.23. These are
visualised in Figure 4.5.

Unlike when classifying the PTOsame model, the RFR surrogates trained on the ran-
dom dataset has better accuracy and precision than the grid dataset (for PTOsame they
were very similar).

As the number of trees increases, the accuracy and precision increase, as with regres-
sion. However, the trend is slight, as with as with PTOsame, since the precision and
accuracy are already high for a small number of trees. Both training time and testing
time are linear in the number of trees, as with regression.

MLP

num nodes per layers 5 10 20 50 100
original grid 5 0.73 0.91 0.85 0.88 0.92
original grid 10 0.8 0.93 0.82 0.9 0.93
original grid 20 0.8 0.87 0.9 0.88 0.94
original random 5 0.9 0.98 0.98 0.98 0.99
original random 10 0.9 0.97 0.98 0.98 0.98
original random 20 0.83 0.94 0.98 0.98 0.98

Table 4.24: R2 of MLP with various numbers of layers (specified in first column).

The raw MLP results are in Tables 4.24 to 4.27. These are visualised in Figure 4.6.

44

(a) (b)

(c) (d)

Figure 4.5: Performance of RFR surrogates on the PTOindiv model.

num nodes per layers 5 10 20 50 100
original grid 5 0.27 0.09 0.15 0.12 0.08
original grid 10 0.2 0.07 0.18 0.1 0.07
original grid 20 0.2 0.13 0.1 0.12 0.06
original random 5 0.1 0.02 0.02 0.02 0.01
original random 10 0.1 0.03 0.02 0.02 0.02
original random 20 0.17 0.06 0.02 0.02 0.02

Table 4.25: MSE of MLP with various numbers of layers (specified in first column).

num nodes per layers 5 10 20 50 100
original grid 5 16.8441 16.8702 8.75277 28.2789 35.7798
original grid 10 28.6763 54.7532 21.8737 61.5676 122.391
original grid 20 95.9174 58.3485 31.3819 87.0249 232.356
original random 5 29.4466 89.8225 43.1875 790.757 336.361
original random 10 46.1404 185.624 390.413 683.754 832.16
original random 20 105.67 164.075 153.472 736.071 1019.19

Table 4.26: Training times of MLP with various numbers of layers (specified in first
column) in ms.

The MLP surrogates trained on the random dataset perform slightly better in terms
of accuracy and precision. There is little difference in the performance of surrogates with
different numbers of layers. As the number of nodes in each layer increases, so too does
the accuracy and precision.

Both training time and testing time are linear in the number of nodes per layer, as
with regression.

45

num nodes per layers 5 10 20 50 100
original grid 5 0.038614 0.088353 0.193444 0.42103 0.940947
original grid 10 0.079009 0.6943 0.342222 0.789252 1.94248
original grid 20 0.487069 0.302677 0.490789 1.64391 4.37556
original random 5 0.071882 0.33466 0.834585 3.86037 8.11662
original random 10 0.149875 1.0664 2.34074 10.8391 20.244
original random 20 0.238437 1.77272 0.862259 17.7204 13.2056

Table 4.27: Testing times of MLP with various numbers of layers (specified in first column)
in ms.

(a) (b)

(c) (d)

Figure 4.6: Performance of MLP surrogates on the PTOindiv model.

4.2.2 Comparing approaches

As mentioned previously, we only approximate the original sub-model. The results can
be found in Table 4.28. The best settings for all surrogates achieve an very high precision
and accuracy (R2 ≥ 0.99, MSE ≤ 0.01). KNN achieved perfect precision and accuracy.
The worst training time belongs to MLP, though all predicting times are comparable.

approach and settings MSE variance fitting time predict time
knn uniform grid k=3 0 1 0.534803 6.67761
rfr random num trees=100 0.01 0.99 27.858 2.02057
mlp random num layers=5 num nodes per layer=100 0.01 0.99 336.361 8.11662

Table 4.28: Performance of best surrogates of each approach.

46

Chapter 5

Future Work

5.1 Future Work

5.1.1 Data collection

We have already collected data in which the PTO parameters, d and k, are varied, and we
use the same d and k for every buoy (2 array parameters). We also have data in which there
are different d and k for each buoy (8 array parameters). To make the approximations,
(and hence the optimal PTO settings based on the approximations) more robust, it would
be useful to collect another data set which varies d, k, as well as wave frequency and wave
angle (4 array parameters). In addition, we another data set to collect could vary d and
k for each buoy, and also wave angle and frequency (10 array parameters).

We wish to use these data sets to see how much longer surrogates training will take,
as well as prediction. We can then check if the extra information allows us to achieve
greater power absorption.

Another aspect we wish to assess is the effect of the training set size on the performance
of a surrogate. To assess this, it would be easier to use a data set with inputs (d and k)
that have been randomly and uniformly generated. This is because any randomly chosen
subset would also be uniformly distributed.

5.1.2 Performance metrics

Currently, the accuracy performance metric we use is R2, and the precision metric is
MSE. However, we would like to use some other accuracy metrics (see Appendix .1)
and precision metrics (see Appendix .2). We want to do this, just to reveal whether the
best surrogate under the metrics we have already tests is still the best surrogate for other
metrics.

5.1.3 Parameter tuning

As mentioned previously, the training methods for the surrogates themselves have pa-
rameters, which can be tuned to ensure the surrogate is performing at its full potential.
Currently, we select subsets of values that interest us: either using exponential back-off, or
values that we believed would yield good results. When there is more than parameters, we
try all values for both in a grid search like approach to find the best. However, there are
more sophisticated algorithms that can automatically tune parameters, including IRACE
[32] and SMAC [33].

47

5.1.4 Surrogates

Other training methods we would like to use include genetic programming, in which
we would have an underlying mathematical model, with unknown coefficients (similar
to mathematical regression problems), and evolve the coefficients that best fit the data.
There is also ridge regression, and least squares regression, however, the kernels need to
be modified like they were for SVMs.

5.1.5 Assessing optimality of PTO settings resulting from opti-
mising surrogates

Our research assesses the surrogates’ abilities to approximate the original model. However,
one key performance metric to assess are the surrogates’ abilities to yield optimal PTO
settings when optimisations are applied to them. This would require running optimisation
algorithms on top of both the surrogates and the state-of-the-art models, and comparing
the optimal PTO settings obtained. Metrics would be based on the resulting power, and
whether the settings are feasible. If the settings are infeasible, we may also consider
how much they exceed the feasible threshold by (i.e, how far beyond safe do the tethers
elongate). In such a case, data may need to be recollected in a non-binary way, so
that instead of denoting feasible or infeasible, it denotes feasible or a measurement of
infeasibility.

48

Chapter 6

Conclusion

This thesis attempted to solve 4 problems: regression and classification of the PTOsame

model, as well as regression and classification of the PTOindiv model. The regression
problems can be broken down by sub-model: original, ignorant, and altered.

For the PTOsame model, the best surrogate for the regression of the original sub-
model was the random forest with 100 trees, resulting in an R2 accuracy of 0.99. The
best surrogate for the ignorant sub-model was KNN with k of 4, which achieved an R2

accuracy of 1 (perfect). This occurred when trained on the dataset collected using a grid
search. Hence, the best value of k was 4, since any new samples to predict will always
fall perfectly between a square of 4 training points. The best surrogate for the altered
model was the MLP with 20 layers and 100 nodes in each. This achieved an R2 accuracy
of 0.97. When classifying the PTOsame model, all surrogates achieved perfect accuracy
and precision

For regression of the PTOindiv model, the MLP achieved the best accuracy and pre-
cision for all 3 sub-models. The best hyperparameters for the original sub-model were 10
layers, and 10 nodes per layer, which achieved an R2 accuracy of 0.98. For the ignorant
sub-model, 5 layers with 100 nodes in each achieved perfect accuracy. For the altered sub-
model, 30 layers with 20 nodes in each achieved an R2 accuracy of 0.9. When classifying
the PTOindiv model, all surrogates achieve R2 of at least 0.99.

All PTOsame surrogates were able to predict thousands of samples in under a millisec-
ond, and the slowest PTOindiv surrogate was still able to predict hundreds of thousands of
samples in under a second. Therefore, the surrogate prediction times are far smaller than
those of the state-of-the-art model. Now that we’ve shown we can train fast and reason-
ably accurate surrogates, we can test the surrogates for optimisation purposes. This would
involve running optimisations on both the surrogates and the state-of-the-art model, and
comparing them. This would be a substantial step forward in the optimisation of PTO
settings of Wave Energy Converters.

49

Bibliography

[1] Drew B, Plummer AR, Sahinkaya MN. A review of wave energy converter technology.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and
Energy, 223(8). 2009; 887–902.

[2] Esteban M, Miguel E, David L. Current developments and future prospects of offshore
wind and ocean energy. Applied Energy. 2012;90: 128–136.

[3] Lagoun MS, Benalia A, Benbouzid MEH. Ocean wave converters: State of
the art and current status. 2010 IEEE International Energy Conference. 2010.
doi:10.1109/energycon.2010.5771758.

[4] Mann LD, Burns A, and Ottaviano M. CETO, a carbon free wave power energy
provider of the future. In Proceedings of the 7th European Wave and Tidal Energy
Conference. 2007.

[5] Mann LD. Application of Ocean Observations & Analysis: The CETO Wave Energy
Project. Operational Oceanography in the 21st Century. 2011. pp. 721–729.

[6] Scruggs JT, Lattanzio SM, Taflanidis AA, Cassidy IL. Optimal causal control of a
wave energy converter in a random sea. Applied Ocean Research. 2013;42: 1–15.

[7] Falnes J. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-
Energy Extraction. Cambridge University Press. 2002.

[8] Cazzalato BS, Ding B, Neumann F, Sergiienko N, Shekh S, Wagner M, Wu J. Fast
and effective optimisation of arrays of submerged wave energy converters. Accepted
by GECCO. 2016.

[9] Ding B, Cazzolato BS, Arjomandi M, Hardy P. Sea-state Based Maximum Power
Point Tracking Damping Control of a Fully Submerged Oscillating Buoy. Under re-
view by Journal of Ocean Engineering. 2016.

[10] Giorgi S, Davidson J, Ringwood JV. Identification of Wave Energy Device Models
From Numerical Wave Tank Data—Part 2: Data-Based Model Determination. IEEE
Transactions on Sustainable Energy, VOL. 7, NO. 3, JULY 2016.

[11] Yaochu J. Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation Volume 1, Issue 2, Pages 61–70.
June 2011.

[12] Banos R, Manzano-Agugliaro F, Montoya FG, Gil C, Alcayde A, Gómez J. Opti-
mization methods applied to renewable and sustainable energy: A review. Renewable
and Sustainable Energy Reviews, 15(4), 1753-1766. 2011.

50

[13] Ringwood J, Butler S. Optimisation of a wave energy converter. In IFAC Conference
on Control Applications in Marine Systems-CAMS (pp. 7-9). Maynooth University.
2004.

[14] Nolan GA, Ringwood JV, Leithead W, Butler S. Optimal damping profiles for a
heaving buoy wave energy converter. In Proceedings of the Fifteenth International
Offshore and Polar Engineering Conference (ISOPE) (pp. 477-485). 2005.

[15] Nunes G, Valério D, Beirao P, Da Costa JS. Modelling and control of a wave energy
converter. Renewable Energy, 36(7), 1913-1921. 2011.

[16] J.T. Scruggs, S.M. Lattanzio, A.A. Taflanidis, I.L. Cassidy Optimal causal control of
a wave energy converter in a random sea. Applied Ocean Research 42 (2013) 1–15

[17] Hals J, Falnes J, Moan T. A comparison of selected strategies for adaptive control
of wave energy converters. Journal of Offshore Mechanics and Arctic Engineering,
133(3), 031101. 2011.

[18] Korde UA, Ertekin RC. Wave energy conversion by controlled floating and submerged
cylindrical buoys. Journal of Ocean Engineering and Marine Energy, 1-18. 2015.

[19] McCabe AP, Aggidis GA, Widden MB. Optimizing the shape of a surge-and-pitch
wave energy collector using a genetic algorithm. Renewable Energy, 35(12), 2767-
2775. (2010).

[20] Borgarino B, Babarit A, Ferrant P. Impact of wave interactions effects on energy
absorption in large arrays of wave energy converters. Ocean Engineering, 41, 79-88.
2012.

[21] Bacelli G, Ringwood J. Constrained control of arrays of wave energy devices. Inter-
national Journal of Marine Energy, 3(4), 53-69. 2013.

[22] Fitzgerald C, Thomas G. A preliminary study on the optimal formation of an array
of wave power devices. In Proceedings of the 7th European Wave and Tidal Energy
Conference, Porto, Portugal. 2007.

[23] Lettenmaier T, von Jouanne A, Brekken T. A new maximum power point tracking
algorithm for ocean wave energy converters. International Journal of Marine Energy
Volume 17, Pages 40–55. April 2017.

[24] Ghasemi A, Anbarsooz M, Malvandi A, Ghasemi A, Hedayati F. A nonlinear compu-
tational modeling of wave energy converters: A tethered point absorber and a bottom-
hinged flap device Renewable Energy Volume 103, Pages 774–785. April 2017.

[25] Zou S, Abdelkhalik O, Robinett R, Bacelli G, Wilson D. Optimal control of wave
energy converters Renewable Energy Volume 103, Pages 217–225. April 2017.

[26] O’Sullivan ACM, Lightbody G. Co-design of a wave energy converter using con-
strained predictive control Renewable Energy Volume 102, Part A, Pages 142–156.
March 2017.

[27] Amarkarthik A, Sivakumar K. Investigation on modeling of non-buoyant body typed
point absorbing wave energy converter using Adaptive Network-based Fuzzy Inference
System International Journal of Marine Energy, Volume 13, Pages 157–168. April
2016.

51

[28] González-Gorbeña E, Qassim RY, Rosman PCC. Optimisation of hydrokinetic tur-
bine array layouts via surrogate modelling Renewable Energy, Volume 93, Pages
45–57. August 2016.

[29] Sarkar D, Contal E, Vayatis N, Dias F. Prediction and optimization of wave energy
converter arrays using a machine learning approach Renewable Energy, Volume 97,
Pages 504–517. November 2016

[30] Halder P, Rhee SH, Samad A. Numerical optimization of Wells turbine for wave
energy extraction International Journal of Naval Architecture and Ocean Engineering
Volume 9, Issue 1, Pages 11–24. January 2017.

[31] Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B.
and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V.
and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot,
M. and Duchesnay, E. Scikit-learn: Machine Learning in Python, Journal of Machine
Learning Research, vol. 12, Pages 2825–2830. 2011

[32] López-Ibáñez M, Cáceres LP, Dubois-Lacoste J, Stützle T, Birattari M. The irace
package: Iterated racing for automatic algorithm configuration Operations Research
Perspectives, vol. 3. pp. 43-58. 2016.

[33] Hutter F, Hoos H, Leyton-Brown K. Sequential model-based optimization for general
algorithm configuration Proc. of LION’11, pp 507-523. 2011.

52

Appendices

53

.1 Calculating accuracy
The error, ei (Equation 1) between the predictor’s output (fi) and original model’s output
(yi), given the input of the ith datum in the set.

ei = yi − fi (1)

In all of the following, ei is given by Equation 1.

ME =
1

n

n∑
i=1

ei (2)

R2 = 1−
∑n

i=1 e
2
i∑n

i=1(ȳ − yi)2
(3)

Where:

yi: is the output of the original model being approximated.

ȳ = 1
n

∑n
i=1 yi

.2 Calculating precision
In all of the following, ei is given by Equation 1.

MAE =
1

n

n∑
i=1

|ei| (4)

MSE =
1

n

n∑
i=1

e2i (5)

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

e2i (6)

54

	Introduction
	Background and Motivation
	Importance of PTO control
	Model Runtime, and Surrogate Models

	Related Work
	Optimisation of array parameters
	PTO controllers
	Surrogate models

	Approximating Power Absorption for Optimisation Purposes
	Contribution
	State-of-the-art models to approximate
	PTOsame model
	PTOindiv model
	Discussion of sub-models: original, altered, ignorant

	Collecting data
	Collection methods
	Visualisation

	Training Surrogate Models
	K nearest neighbours
	Random forest
	Multilayer perceptrons
	Support vector machines

	Approximating Power Absorption of Arrays of WEC with the same PTO Settings
	Regression
	By approach
	Comparing approaches

	Classification
	By approach
	Comparing approaches

	Approximating Power Absorption of Arrays of WEC with individual PTO Settings
	Regression
	By approach
	Comparing approaches

	Classification
	By approach
	Comparing approaches

	Future Work
	Future Work
	Data collection
	Performance metrics
	Parameter tuning
	Surrogates
	Assessing optimality of PTO settings resulting from optimising surrogates

	Conclusion
	Appendices
	Calculating accuracy
	Calculating precision

