
A Generic Bet-and-run Strategy for

Speeding Up Stochastic Local Search

Markus Wagner
markus.wagner@adelaide.edu.au

Code and results: https://bitbucket.org/markuswagner/restarts

http://adelaide.edu.au
https://bitbucket.org/markuswagner/restarts

A Generic Bet-and-run Strategy for

Speeding Up Stochastic Local Search

Markus Wagner
markus.wagner@adelaide.edu.au

Code and results: https://bitbucket.org/markuswagner/restarts

Context in this session
Carola: change parameters during a run
Anja: change algorithms during a run
Markus: don’t change anything during a run

http://adelaide.edu.au
https://bitbucket.org/markuswagner/restarts

Restarts

A desktop PC does not work properly
à we restart it.

Performance of stochastic algorithm and
randomized search heuristics unsatisfactory
à we restart it again and again.

While this approach is well-known, few algorithms
directly incorporate such restart strategies.

Potential reason: added complexity of designing an appropriate restart strategy that is
advantageous for the considered algorithm.

We are looking for: a generic framework for restart strategies that is not overly
dependent on the algorithm used and the problem considered.

https://media.makeameme.org/created/Hello-IT-Have.jpg

https://media.makeameme.org/created/Hello-IT-Have.jpg

Related work

Luby, Sinclair, and Zuckerman (1993)
■ for Las Vegas algorithms with known run time distribution:

sequence of running times (1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,…) optimal
restarting strategy (up to constant factors)

Satisfiability problem
■ empirical comparisons showing substantial impact on efficiency of SAT

solvers [Biere 2008, Huang 2007]
■ unsurprising as SAT/CSP solvers learn no-goods during backtracking

[Cireé et al 2014]
Classic optimisation algorithms are often deterministic
■ The underlying algorithm of IBM ILOG CPLEX is not random, but

characteristics change with memory constraints and parallel
computations.

■ Lalla-Ruiz and Voss (2016) investigated different mathematical
programming formulations to provide different starting points.

end of total
time budget t

choose
best-of-init

start

k
ru

ns

Phase 1
of length k·t1

Phase 2
of length t2=t−k·t1

t1 t1+t2

time

Notes
Single-run:

k=1
Multi-run with restarts from scratch:

t1=t/k and t2=0

Fischetti and Monaci (2014)
“Exploiting erraticism in search”
k=5, CPLEX, diversity, MIPlib 2010

de Perthuis de Laillevault, Doerr,
and Doerr (2015)
1+1-EA on OneMax
possible additive runtime gain of order
sqrt(n log n)

Related work
Bet-and-Run by Fischetti and Monaci (2014)

end of total
time budget t

choose
best-of-init

start

k
ru

ns

Phase 1
of length k·t1

Phase 2
of length t2=t−k·t1

t1 t1+t2

time

Notes
Single-run:

k=1
Multi-run with restarts from scratch:

t1=t/k and t2=0

Fischetti and Monaci (2014)
“Exploiting erraticism in search”
k=5, CPLEX, diversity, MIPlib 2010

de Perthuis de Laillevault, Doerr,
and Doerr (2015)
1+1-EA on OneMax
possible additive runtime gain of order
sqrt(n log n)

Related work
Bet-and-Run by Fischetti and Monaci (2014)

end of total
time budget t

choose
best-of-init

start

k
ru

ns

Phase 1
of length k·t1

Phase 2
of length t2=t−k·t1

t1 t1+t2

time

Notes
Single-run:

k=1
Multi-run with restarts from scratch:

t1=t/k and t2=0

Fischetti and Monaci (2014)
“Exploiting erraticism in search”
k=5, CPLEX, diversity, MIPlib 2010

de Perthuis de Laillevault, Doerr,
and Doerr (2015)
1+1-EA on OneMax
possible additive runtime gain of order
sqrt(n log n)

Related work
Bet-and-Run by Fischetti and Monaci (2014)

Implementation Detail:
The initial runs can be run sequentially – they don’t have to
be in parallel. Keep in mind: our goal is to make best use of

some total computation budget t, not of some wallclock time.

A Generic Bet-and-Run Strategy

Our experiments
■ Traveling Salesperson
□ Lin-Kernighan Heuristic (from Concorde)
□ 111 symmetric TSPlib instances

with up to 100k cities
■ Minimum Vertex Cover
□ FastVC (Cai 2015)
□ 86 large MVC instances

■ Also, algorithms are pure black boxes:
start with seed … … … stop

■ Lots of bet-and-run strategies
Example: heatmap on the right
~450 bet-and-run setups for 1 instance

Example: FastVC on MVC instance shipsec1.mtx
Total budget t=240s
Shown in colour is absolute distance to best-found (117,366).

This area:

bet-and-run advantage

This diagonal:

k runs of t/k length

(naïve restarts)

This column:

1 restart

(single naïve run)

A Generic Bet-and-Run Strategy
Dependency on total time budget

Example: solution quality achieved by FastVC on instance sc-shipsec5
(average of 100 runs)

1 regular run

4 runs with 25%

different bet-and-run

strategies

Cross Domain Study
To-be-investigated Bet-And-Run Approaches

Cross Domain Study
First Results (10 instances per domain only, 14
strategies)

Shown are average ranks
across 10 instances.

More tables in the paper.

Universally good (given our experiments): Restarts401%
Phase 1: 40 runs, each with a time budget of 1% of the total time budget
Phase 2: use the remaining 60% to continue the best run of Phase 1

Comparison of our “universal” Restarts401% with a single run:
Wilcoxon-rank-sum test (p=0.05): green shows where Restarts40

1% is
significantly better,
grey (identical or insignificant), red (single run is better)

Total time limit:

Exploitable erraticism
using restarts:

Cross Domain Study
Summary (~200 instances, 1 Bet-and-Run strategy
vs 1 single run)

use naïve
restarts

sample starting
points

Our bet-and-run*

Our bet-and-run*

Our bet-and-run*

Summary so far

We studied a generic bet-and-run restart strategy
• easy to implement as an additional speed-up heuristic
• demonstrated effectiveness on two classical NP-complete optimisation

problems with state-of-the-art solvers
• Significant advantage of Restarts40

1%:
Phase 1: 40 runs with 1% each of the total time
Phase 2: continue the best of these 40 for 60% of the total time

Published:
AAAI Conference on Artificial Intelligence 2017
A Generic Bet-and-run Strategy for Speeding Up Stochastic Local Search
Tobias Friedrich, Timo Kötzing, and Markus Wagner
Code and results: https://bitbucket.org/markuswagner/restarts

13

https://bitbucket.org/markuswagner/restarts

More work on this (1/3) – Theory

Genetic and Evolutionary Computation Conference (GECCO) 2017
Theoretical results on bet-and-run as an initialisation strategy
Andrei Lissovoi, Dirk Sudholt, Markus Wagner, and Christine Zarges

14

We define a family of pseudo-Boolean functions (ç):
- the plateau shows a high fitness, but does not allow

for further progression
- the slope has a low fitness initially, but does lead to

the global optimum.
Results:
- non-trivial k and t1 are necessary,

- t1 is linked to properties of the function,
- fixed budget analysis to guide selection of the bet-

and-run parameters to maximise expected fitness
after t = k · t1 + t2 fitness evaluations.

More work on this (2/3) – Generalised Bet-and-Run

AAAI 2019
An Improved Generic Bet-and-Run Strategy for Speeding Up Stochastic Local Search
Thomas Weise, Zijun Wu, and Markus Wagner

15

Major result of 78 million
experiments:
Decision maker “take current best”
is difficult to beat, but it is possible.

More work on this (3/3) – Reactive Restarts

Learning and Intelligent Optimisation (LION) 2017
Learning a Reactive Restart Strategy to Improve Stochastic Search
Serdar Kadioglu, Meinolf Sellmann and Markus Wagner

Drawback of previous work: Whether a run looks promising or abysmal,
it gets run exactly until the predetermined limit is reached.

We train (offline) a controller. It then decides online:
1. Continue the current run.
2. Continue an old run.
3. Start a new run.
à It considers: performance and performance projections of the individual
runs, and the remaining time budget.

16

More work on this (4/3) – Future work

- Other domains: continuous optimisation, multi-objective optimisation, …
- Heterogeneous setups:

- different hierarchies/races/… of the independent runs
- different algorithms
- different algorithm configurations
- configure on-the-fly

è this might be a hot topic, and it has a connection to algorithm control, hyper-
heuristics, partial restarts (perturbations), …

17

Markus Wagner
markus.wagner@adelaide.edu.au

Code and results: https://bitbucket.org/markuswagner/restarts

http://adelaide.edu.au
https://bitbucket.org/markuswagner/restarts

