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Abstract

Online social networks have become an integral aspect of our daily
lives and play a crucial role in shaping our relationships with others.
However, bugs and glitches, even minor ones, can cause anything
from frustrating problems to serious data leaks that can have far-
reaching impacts on millions of users.

To mitigate these risks, fuzz testing, a method of testing with
randomised inputs, can provide increased confidence in the correct
functioning of a social network. However, implementing traditional
fuzz testing methods can be prohibitively difficult or impractical for
programmers outside of the social network’s development team.

To tackle this challenge, we present Socialz, a novel approach
to social fuzz testing that (1) characterises real users of a social
network, (2) diversifies their interaction using evolutionary compu-
tation across multiple, non-trivial features, and (3) collects perfor-
mance data as these interactions are executed. With Socialz, we aim
to put social testing tools in everybody’s hands, thereby improving
the reliability and security of social networks used worldwide.

In our study, we came across (1) one known limitation of the
current GitLab CE and (2) 6,907 errors, of which 40.16% are beyond
our debugging skills.
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1 Introduction

Online social networks (OSNs) are an integral part of modern so-
ciety, influencing a wide range of aspects of our daily lives. The
vast quantity of personal information shared on these platforms
makes them a treasure trove for companies seeking to reach out
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to potential customers and for individuals looking to grow their
social circle or entertain themselves. However, like any software,
OSNs are prone to bugs and technical issues; consequences range
from poor user experience [5, 9] to massive data breaches affecting
billions of individuals [26].

The recent rise of social bugs in software systems has prompted
the need for social testing [1]. However, for the research community,
social testing poses several challenges. First and foremost, obtaining
data from online social networks (OSNs) can be time-consuming,
resource-intensive, and requires specialised expertise, which may
not be accessible to non-specialists [12]. For example, privacy poli-
cies and community guidelines may restrict access to data, making
it unavailable to researchers; Furthermore, descriptions of data ex-
traction methods are often omitted in many studies [13]. Second,
researchers may be limited in their ability to conduct experiments
on OSN systems if they are built using proprietary software plat-
forms [1]. Finally, the sheer size and complexity of OSNs can result
in significant operational costs, which can impede researchers’ abil-
ity to conduct large-scale experiments, limiting the scope and depth
of their research.

To overcome these challenges, technology companies develop
tools such as Web-Enabled Simulation (WES, by Facebook/Meta) [1],
allowing developers to test code updates and new features in a sim-
ulated environment, without risking real user data. Social testing,
which involves simulating interactions among a large community
of users, can be used to uncover faults in online social networks.
However, these tools are not available to the public and may have
limitations in simulating the full spectrum of user behaviours.

To address these limitations, we introduce Socialz, an approach
for social fuzz testing, which makes the following key contributions:

(1) characterisation of users of a real social network,

(2) evolutionary diversification of community interaction with
respect to multiple, non-trivial features, and

(3) a workflow for executing interactions and collecting perfor-
mance data.

Socialz aims to advance the field of social testing through
diversity-based user behaviour: it evolves diverse sets of virtual
users that are distributed across a non-trivial feature space, which
in turn enables us to cover a wider range of behaviours compared
to real users, and thus increases the likelihood of uncovering bugs
that may not be detected by a set of similar and biased virtual users.

2 Related Work

Software testing has evolved into a vast field that includes many
different methods and techniques for assessing the performance,
usability, and other attributes of software systems [18]. Testing is
performed at various levels of abstraction, ranging from unit testing
to system testing.
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Recently, the concept of social testing has emerged as a new
level of abstraction, potentially positioned above system testing [1].
This is due to the recognition that social bugs can arise through
community interactions and may not be uncovered by traditional
testing that focuses solely on single user journeys [17].

Next, we briefly survey prior work in the testing of social net-
works, the application of evolutionary methods in fuzz testing, and
diversity optimisation.

2.1 Testing of Social Networks

Search-Based Software Testing (SBST) is a technique that lever-
ages optimization search algorithms to solve software testing prob-
lems [25]. This approach is widely used in both industrial and
academic sectors, including at Facebook, where it is employed to
test the behaviour of both the system and its users [3].

In social networks, testing goes beyond simply assessing the
behaviour of the system and involves evaluating the interactions
between users facilitated by the platform. To that end, Web-Enabled
Simulation (WES) simulates the behaviours of a community of
users on a software platform using a set of bots [1]. Traditional
tests, on the other hand, involve executing a predetermined series
of input steps. WES is run in-vivo but in a shadow copy of the
system, hence as a separate “digital twin”, which allows for testing
without risk to real user data [2]. Both “digital twins” and WES
have widespread industrial applications, not only in OSNs but also
in robotics, manufacturing, healthcare, and transport [19, 32].

In addition to testing, there are also methods for formally verify-
ing the correctness of social network software and systems. Formal
verification of social network protocols and algorithms ensures se-
curity and reliability by ensuring access to content is subject to both
user-specified and system-specified policies [7, 20]. Model check-
ing can be applied at various levels of abstraction, from high-level
network properties to the implementation of individual compo-
nents [30]. This approach can be used in combination with other
testing techniques, such as simulation or testing with software-
controlled bots, to provide a more comprehensive evaluation of a
social network’s behaviour and performance [31].

2.2 Evolutionary Fuzzing

We adopt definitions from Manes et al. [23], who define fuzzing as
a software testing methodology that involves injecting unexpected
or randomised input data into a program-under-test to uncover
defects or bugs. A specific application of fuzzing, called fuzz testing,
evaluates the security policy violations of the PUT. The tool used
to perform fuzz testing is known as a fuzzer.

The inputs used in fuzzing can be selected either randomly, with
each element having an equal chance of being chosen, or through
guided methods such as syntactic or semantic models [24]. Evo-
lutionary fuzz testing is a variant of fuzz testing that leverages
evolutionary algorithms to optimise the input data. Research has
shown that it is effective in discovering a wide range of vulnera-
bilities, including those that are difficult to detect with traditional
testing methods. For example, Li et al. [22] demonstrate V-Fuzz, a
vulnerability-oriented evolutionary fuzzing framework that com-
bines vulnerability prediction with evolutionary fuzzing to reach
potentially vulnerable code. They test various open-source Linux
applications and fuzzing benchmarks. For Android applications,
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Cotroneo et al. [8] introduce a coverage-guided fuzzing platform
that demonstrated to be more efficient than blind fuzzing. Similarly,
Zhong et al. [36] employ a constrained neural network evolutionary
search method to optimise the testing process and efficiently search
for traffic violations.

Although fuzzing is widely used, to the best of our knowledge, no
research has been conducted to fuzz test a social network system.

2.3 Diversity Optimisation

When it comes to social fuzz testing, the actions a user takes need
to be determined, such as “follow a particular person”. In such a
case, defining a user that achieves exactly this goal is straightfor-
ward, as a developer can easily translate the desired outcome into
a specific interaction. However, creating a user with a more com-
plex behaviour, such as “a virtual user should be highly active but
not very central to everything that is going on”, is not as simple.
Mapping the desired interaction between the virtual user and its en-
vironment is challenging due to the intricate interplay, even though
the activity and centrality calculations may not be black boxes by
definition. This issue becomes even more complex when designing
a group of virtual users within a social network that can interact
with each other in various ways.

We propose a practical solution to addressing such issues by
treating the user features as black box functions and utilising heuris-
tic approaches like novelty search [33] or evolutionary diversity
optimisation [35]; this has been made possible only recently by
algorithmic advancements in diversity optimisation with multiple
features.

3 The Methodology of Socialz: Overview

We define social fuzz testing as a method aimed at finding bugs
in online social networks by simulating diverse user behaviours
and interactions. By systematically diversifying these interactions,
social fuzz testing aims to reveal bugs that traditional social testing
might overlook.

Socialz instantiates this via three-stage approach, each of which
has a distinct methodology: To establish a realistic baseline for user
interactions, in Stage 1/3: Characterisation of User Behaviour, we
detail the process of obtaining and analysing data from a real OSN
to understand the behaviour of users on the network. To simulate
and enhance unexpected user behaviours that may challenge the
robustness of OSNs, Stage 2/3: Evolutionary Diversification of Com-
munity Interaction then improves the diversity of user behaviour
in the network. Finally, to validate the resilience of OSNs against
diversified user behaviours, Stage 3/3: Execution involves evaluating
the evolved network.

Target platform. To demonstrate Socialz, we need to choose a
server as the PUT. The server needs to meet certain requirements
to ensure that the case study can be conducted, such as being freely
available, providing an API to impersonate users, and providing
the ability to gather system performance data.

GitLab Community Edition (GitLab CE) is a good fit for these
requirements. GitLab CE is the free and open source edition of
GitLab, which is a platform that has over 30 million registered
users [14]. Despite being free, GitLab CE provides a comprehensive
set of performance metrics that are continually stored on an internal



Socialz: Multi-Feature Social Fuzz Testing

Saturation

100%

00:00 04:00 08:00 12:00 16:00 20:00
min max avg curren

active_db_connections saturation 6.90% 30.00% 17.42% 20.00%
cpu saturation 12.58% 61.41% 48.01% 23.68%

disk_space saturation 51.16% 68.88% 60.34% 68.69%

Figure 1: Grafana dashboard example, showing statistics of
our GitLab CE server.

Prometheus time-series database. This database can be scrapped
with a comprehensive set of pre-defined Grafana dashboards [15],
providing a wide range of performance metrics for our purposes
(see Figure 1).

To easily reset the system to well-defined states, we run Git-
Lab CE 16.6 (November 2023) in virtual machines with Ubuntu 22.04
LTS. For the evolutions, we utilised the CPU optimised c3.xlarge
instances (VCPUs: 16, memory: 32 GB), and for loading the data
smaller CPU optimised c¢3.medium (VCPUs: 4, memory: 8 GB).

4 Characterisation of User Behaviour (Stage 1/3)

As the starting point in our case study, we populate our GitLab
server with real-world data from GitHub. We use GitHub as our
data source because it has a large community of over 100 million
developers [11]. There are also several Git server alternatives, such
as Gitea and Gogs!, that can be self-hosted. Gogs is a lightweight
self-hosted Git service that can run with minimal computational re-
quirements. Gitea is also a lightweight application, originally forked
from Gogs, that offers more features such as code hosting, code
review, CI/CD, team collaboration and package registry. However,
at the moment of our project, neither of both options included a
complete set of metrics to monitor the application performance, and
the development of such metrics would have required a significant
effort beyond the scope of our project. In contrast, GitLab stores its
metrics in a Prometheus time-series database that can be scrapped
or accessed with any HTTP client. Moreover, these metrics can be
easily monitored online with a set of pre-configured dashboards
offered by GitLab.

The next point is as critical as the existence of a server that
we can test: projects exist that provide access to user interaction
data that is similar to that found in online social networks (OSNs).
These interactions include creating and annotating content, creat-
ing networks (e.g. starring a repository, linking comments), as well
as “malicious” interactions (e.g. intentionally or unintentionally
submitting bugs, spamming, or violating privacy). One such project
that provides data on interactions is GH Archive?. It is a public
dataset available on Google Big Query that has been recording the
public GitHub timeline since 2011, and it makes this data easily
accessible through SQL-like queries of JSON-encoded events as
reported by the GitHub APL

https://gitea.io, https://gogs.io.
Zhttps://www.gharchive.org.
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Table 1: Original dataset: 1,523 users created a total of 6,742
events involving 156 repositories and forks (2011-2016).

Event type Number of events
PushEvent 4234
WatchEvent 1206
PullRequestEvent 852
ForkEvent 450

To narrow down the immense amount of data available in
GH Archive®, we choose a sub-community within GitHub, and
after considering various sub-communities based on their size, we
find that COBOL’s is small enough to enable us to conduct a thor-
ough analysis of the data. This is an intentional choice, because we
target a “complete” subset of the data, i.e. not a random sample of
nodes or edges from GH Archive that are not interconnected. We
model the data as a graph, with users and repositories as nodes and
GitHub events as edges. In this model, repositories can be thought
of as groups on an online social network (OSN) where users share
and contribute content.

Next, we explicitly establish similarities between GitHub events
to activities as they can be found on other networks. In particular,
we focus on GitHub events that are akin to content creation, content
annotation, and network creation:

(1) WatchEvents and ForkEvents can be likened to liking a public
profile page.

(2) PushEvents can be thought of as being invited to a group
with permission to publish some content.

(3) PullRequests can be thought of as requesting permission to
publish something to a group.

(4) FollowEvents represent establishing a connection or friend-
ship with another user. Unfortunately, as of December 2013
FollowEvents have stopped being recorded in GH Archive,
we need to create a workaround where connections between
users are based on their similarity. To ensure consistency in
our analysis, we disregard the existing FollowEvents in the
GH Archive data and instead utilise only our own approach
(see Section 5.2).

Finally, to ensure that our dataset is as complete as possible, we
further adjust its size by filtering it to only include events from the
years 2011 to 2016 (see Table 1). This decision allows us to compile
a relatively complete dataset (i.e. starting from the beginning of
GH Archive’s records and going up to a particular date), rather
than having more recent but incomplete data (e.g. like considering
the last six years until today) in which possibly all relevant events
would have occurred before the starting date of the snapshot.

5 Evolutionary Diversification of Community
Interaction (Stage 2/3)

In this section, we define the components of our evolutionary ap-
proach and how they are used to diversify a set of virtual users,
which are less biased than their real-world counterparts. This pro-
cess has the potential to reveal anomalies or unexpected behaviours

3As of June 2023, the GH Archive data stored on Google BigQuery totals more than
19.64 terabytes.
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that would otherwise be difficult to detect in sets of bots that are
similar and biased.

5.1 Features of Community Interaction

To characterise users, we investigate three features that we consider
to be non-trivial in the sense introduced in Section 2.3: given these
features, a developer may struggle to manually design a set of virtual
users that exhibit a spread of desired community interactions. Our
chosen features allow us to characterise how active a user is, what
is its relative importance and what kind of interactions the user
is involved in: First, the graph degree of centrality measure of the
nodes quantifies how active a user is in the network, i.e. how many
events are submitted. This measure is often used as a notion of
popularity in social networks [34], as nodes with a large number
of relationships are considered more powerful and central, but has
a limitation in that it only takes into account local knowledge of
the network topology. Hence, we introduce an additional centrality
metric to supplement its analysis next.

Second, to assess the relative importance of a user on the network,
we utilise the PageRank algorithm [29]: it is fast to compute, well
suited for a directed network such as ours and has been proven to
be effective in characterising users [21].

Third, to characterise the types of actions a user performs — for
example, a user may submit only PushEvents, or only ForkEvents
and PullRequestsEvents — we represent each combination as a
binary vector and then consider the corresponding decimal value
as that user’s event type.* We consider 15 combinations, as we have
four event types that are not FollowEvents, and the combination of
“user does not interact at all” is not allowed.

It is critical to emphasise that these three metrics are features,
not objectives: no user is “better” or “worse” than another one,
neither in a single-objective sense, nor in a multi-objective sense.

5.2 Solution Evaluation

In our evolutionary setup, each individual is an interaction graph
that represents how virtual users interact in a social network. In
particular, each individual is an edge list that contains all the nec-
essary information of our graph: the source node, the target node,
and the type of event. To evaluate our graphs, we have defined the
following six steps.

First, we transform the edge list into an two-dimensional adja-
cency matrix. This adjacency matrix has four areas that reflect the
interactions repo-repo, repo-user, user-repo, and user-user.

Second, we record the interactions between users and reposito-
ries in the repo-user and user-repo areas by summing the number
of events that occur between each repository and user. Each event
has a weight of one, regardless of its type. At present, as we do
not further differentiate, the repo-user and the user-repo areas are
mirrored versions of each other.

Third, as there are no interactions between repositories in our
approach, the repo-repo area is always filled with zeros.

Fourth, we use the user-user area to store FollowEvents. It is
initially empty, and we fill it by evaluating the cosine similarity
of the users based on their interactions with repositories (areas

4Because the number of users is much larger than the number of possible combinations,
and because we aim for diversity, we conjecture that variations to this mapping
procedure only have minor effects on the overall outcomes.
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user-repo, repo-user). If the cosine similarity is greater than zero
for a pair of two users, then we set the respective entry to 1. The
diagonal is set to 0 as users cannot follow themselves. The resulting
matrix for the Original dataset looks like this (users 658 and 659 are
chosen to show non-zero data, as the matrix is sparsely populated):

repoy  --:  Tepoise  usery - --  USerg5g  USerg59 - USer{533
repop 0 0 ; 0 0 4 0
|
reporse | 0 o o 0 00 |
usery 0 0 1= 0 1 0 0
|
X |
usergsg 0 0 | 1 0 0 0
usergs9 4 0 | ) 0 0 0
|
§ |
useris23 0 0 L0 0 0 0

Fifth, with the FollowEvents incorporated into our edge list, we
calculate the PageRank score and degree of centrality of each node.
For the event type feature, we filter our data to only include user
nodes and map each user node to the combination of events they
were involved in.

Finally, we calculate the star-discrepancy score for the interac-
tion graph.

Our rationale for the decision to create FollowEvents between
two users based on the simple criterion that the cosine similarity
across all events (for these two users) is greater than zero is three-
fold and mostly based on practical considerations: (1) we make the
assumption that users who create similar events may be likely to
follow each other, (2) the approach is deterministic and thus saves
memory (at the cost of computation time), and (3) it reduces the
search space by allowing us to generate community interactions.

5.3 Evolutionary Algorithm

We employ a diversity optimisation approach using the star-
discrepancy measure, based on [27]. The star-discrepancy mea-
sures the regularity with which points are distributed in a hyper-
cube, and in particular with respect to all axis-parallel boxes [0, b],
b € [0, 1]9 that are anchored in the origin. Hence, this metric helps
us evaluate how evenly the points are distributed in the feature
space. In our case, each point represents a user with its coordinates
defined by the three above-described metrics. We linearly scale all
three metrics into [0, 1].

We use a (1 + 20)-EA, and in each mutation, we randomly add
and delete edges, where the particular action and the particular
edge are chosen uniformly at random. When deleting edges, we do
not allow nodes to be disconnected, in which case we resample.

To aid the convergence, we utilise a success-based multiplicative
update scheme that can lead to faster solution convergence [10].
This scheme provides a dynamic mutation rate for the EA based
on the performance of the offspring. If an iteration is successful,
meaning an offspring is not worse than the current solution, the
mutation rate is increased by a constant factor A = 2. If the offspring
is not better, the mutation rate is decreased by a constant factor
b = 0.5. The initial per-edge mutation rate is 1/n, where n is the
number of edges, which is the total number of events that are not
FollowEvents.

In summary, our evolutionary approach to diversified commu-
nity interaction works as follows. We pass an interaction graph
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Figure 2: Evolution of the interaction graph. For 30 inde-
pendent runs, red shows the average discrepancy (of user
behaviour), and grey shows the number of mutations (light
grey: min-max range; dark grey: 95% confidence interval).

as an edge list to our evolutionary algorithm, mutate the edges as
described, compute the user’s similarity to add FollowEvents and
then create our graph to compute PageRank and centrality for each
user and map the users to the combination of events they were
involved with. With these three features, we compute a graph’s
star-discrepancy score and, by means of our evolutionary algorithm,
iteratively keep improving.

5.4 Diversified Community Interaction

We start by using the original edge list of 6,742 events to calculate
the similarity between the 1,523 users, resulting in an edge list
of 397,224 events with a star-discrepancy score of 0.305 in the
three-dimensional feature space. Then, we use this as the initial
definition of the community interaction on our server, and apply
the previously described evolutionary approach. We perform 30
independent evolutions, each for 10,000 generations, with each run
taking approximately 30 hours. This results in interaction graphs
with star discrepancies between 0.01107 and 0.01166.

Figure 2 shows the evolution over time. The self-adaptive pa-
rameter control appears to work well: (1) the number of mutations
increases very quickly to several hundreds resulting in a quick im-
provement in diversity, (2) the number of mutations then gradually
decreases to tens of mutations from 6,000 generations on, while
still resulting in further improvements of the diversity.

6 Execution (Stage 3/3)

In this section, we present our approach for executing and evaluat-
ing community interaction.

6.1 Benchmarking the Evolutionary Approach

A natural question is how to compare the Original and Evolved edge
lists, because they are of notably different sizes? Examplarily, we
answer this using a practical approach. First, of the 30 independent
runs from Stage 2/3, we select the interaction graph with the low-
est star-discrepancy; its evolved edge list contains 433,054 events
with a corresponding star-discrepancy score of 0.01107 for 1,523
users. Next, to compare the Original and Evolved edge lists, we
craft additional datasets using two approaches. The first approach
creates a larger version (called “Simple”) of the original edge list
by copying only the existing events until the size of this simple
version matched that of the evolved edge list. The second approach
generates new connections at random until the edge list reached the
same size as the evolved one; the resulting community interaction
is called “Random”. In both approaches, we ensure that the number
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Table 2: Dataset comparison: number of events

Event type Original Simple Random Evolved

FollowEvent 390,482 420,502 420,502 420,502
PushEvent 4,234 7,895 5,644 4,822
WatchEvent 1,206 2,293 2,666 2,576
PullRequestEvent 852 1,561 2,367 2,578
ForkEvent 450 803 1,875 2,576

Total 397,224 433,054 433,054 433,054

of FollowEvents is the same, as these events are considerably more
numerous than other types of events. By reducing the potential
impact of differences in size on the validity of the results, these
approaches allow for the creation of comparable versions of the
Original and Evolved interactions.

Table 2 shows a first comparison of the four interaction graphs:
the Original one that is directly based on GitHub data, its Simple
(but larger) version, the Random version, and the Evolved one.

Figure 3 presents visualisations of the four communities. First,
the left-most column shows projections of the graphs into 2d: edges
refer to interactions between users and repositories; dot size repre-
sents the degree centrality of a node with larger dots indicating a
higher degree centrality; and the colour of each dot represents the
PageRank score of the node, where the colour range from green,
less important, to yellow, higher score. As we can see, the Origi-
nal and the Simple ones are (subjectively) close in structure. The
Random one appears fairly homogeneous, and the Evolved one is
much more diverse in terms of the distribution of PageRank scores
and degree centrality.

Figure 3 complements these observations by showing the three
features used to calculate the star-discrepancy score for each dataset,
i.e. the degree of centrality of each user, their PageRank score, and
the combination of events they are involved with. In particular,
the discrepancy scores are 0.325 for the Original interaction graph,
0.327 for Simple, 0.069 for Random and 0.011 for Evolved.

The visualisations show that users in the Original and Simple
datasets tend to cluster together and occupy a smaller space, while
users in the evolved edge list and the random version of the original
edge list appear to be more evenly distributed throughout the space.
Interestingly, even the random version achieves a fairly diverse set
of interactions, although the event types appear much less covered
by the random dataset when compared to the evolved dataset. While
it may appear that Evolved’s diversity in the PageRank and degree
centrality subspace is less-than-impressive, in its own subspace
ranges, the diversity is very even; Evolved’s evolution dropped
large degree centrality users, and later (as evolution is diversity
focussed), the boundaries would no longer be actively pushed out-
wards, relative to what can happen during Simple’s and Random’s
construction. Despite this limitation, this data suggests that our evo-
lutionary algorithm effectively improves the distribution of users
in the feature space.

6.2 Observing effects of community interactions

To assess the impact that the different datasets have on the server,
we consider the processing of the community interaction as an
actual benchmark in itself: as the hundreds of thousands events are
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Figure 3: Dataset comparison: user interaction based on interaction features. The 2d plots are projections of the 3d plots. The
value ranges are always [0, 1] based on the minimum and maximum values across all four interaction graphs.

processed between the 1523 users on the server, we observe how
the system behaves. In the following, we outline the workflow used
when executing the event and we present our observations.

6.2.1  Methodology We require an elaborate workflow as the ran-
domised events create a broad range of situations that need to be
dealt with; they would otherwise simply results in a myriad of
errors. Essentially, all types of events are first validated by checking
GitLab CE’s database to see if the user triggering the event exists.
If not, the user is created. The same process is followed for the user
and/or repository targeted in the event. The flow then proceeds to
the corresponding action for that event.

A complex logic is required for pull request events, where we
select or create a branch to submit a pull request. If there is already
an open pull request on that branch, we try to merge it. Otherwise,
we close the event. If the pull request is closed, we reopen it. To add
some realism, we use a corpus of words that we extracted from the
original dataset, so when we create a commit or a pull request, we
add a random text from this corpus, allowing the system to check
how many lines of text were added or deleted following Git logic.

On the technical side, we use the previously described setup
with GitLab CE and the virtual machine. Our GitLab API wrapper
code implements the workflow and is used to load our datasets
(Original, Evolved, Simple, and Random). During the processing,
we collect performance data from the internal Grafana dashboard
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Figure 4: Processing of community interactions over time.

panels and from the Prometheus database (see Section 3) included
in the GitLab installation. As substantial development effort has
gone into developing the evaluation environment, we make the
virtual machine images publicly available at https://github.com/
fzanart/Socialz/.

The processing of all community interactions is time-consuming:
the execution of the Original/Evolved/Simple/Random datasets on
the virtual machines takes between 16 and 42 hours.

6.2.2  Effects on the system First, Figure 4 shows the requests per
second handled (as a proxy for CPU saturation) and memory satu-
ration over time, while the interactions are processed. As we can
see, all four interaction graphs result in different workloads over
time. The Original interactions load the fastest as their number
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Figure 5: Correlation of user features and resource utilisation.
Shown are the averages for each of the 1523 users.

is substantially below those of the other three. The Evolved ones
appear to have the largest number of spikes in the CPU saturation
and the lowest rate of processed requests per second, resulting in
the longer overall time needed to load the data.

To gain further insight into user behaviour and its impact on the
system, Figure 5 also presents a correlation analysis. Interestingly,
despite acknowledging the fluctuation in performance over time as
illustrated in Figure 4, our analysis identifies several statistically
significant differences in this case. In particular, we contrast the
resource utilization metrics Latency with the Degree Centrality. We
observe medium, negative Spearman correlations (r < —0.36) for
both the Original and Simple datasets (statistically significant). For
the Random and Evolved interaction graphs, a very weak, positive
correlation (0.05 < r < 0.07, statistically significant).

Similarly, for memory saturation and PageRank, we observe
negative correlations (r < —0.22, statistically significant) for both
the Original and Simple datasets. For the Random and Evolved
interaction graphs, no statistically significant correlation exists.

6.2.3  Characterisation of the Performance Indicators When evalu-
ating the potential usefulness of performance indicators during the
evolution of community interaction in-vivo on a server, we have
made three main observations.

First, we have noticed that neighboring data points in Figure 4
often show variation due to what seems to be random noise, mak-
ing it challenging to compare marginal differences that may be
impacted by factors outside of our control. In addition, the correla-
tion analysis shows that users who are similar, such as having the
same degree centrality, can still have different experiences in terms
of server load, making it potentially difficult to develop a surrogate.

Second, we have observed that disruptive events can be triggered
by processes running on the virtual machine or by GitLab CE’s
own management, which can have a significant impact on the
performance of the server.

Third, we have noted significant changes in the performance of
the server at the start of the evaluation, where there is a sudden
change observed after just a few minutes or hours. These changes
may be indicative of major state changes that occur during the
evolution of community interaction on the server.

6.2.4 Found Limitations and Unknown Errors

Found Limitation Preliminary testing throughout our study has
uncovered an issue with the server that could not have been de-
tected through a simple repetition of the Simple dataset: GitLab
imposes limits to ensure optimal performance quality. Our initial
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experiments revealed a restriction on the maximum number of
followed users to 300. This was confirmed by a review of public
issue comments in GitLab, which indicated that this limit was in
place to prevent the activity page for followed users from failing
to load [6]. In our case, tests resulted in HTTP 304 errors when
trying to load follow events for users who were following more
than 300 users, causing the event creation to fail. To resolve this
issue, we manually edited GitLab’s source code to increase the limit
to 1,523, the total number of users in our dataset. We see this as
a good illustration of how diverse data can outperform original
data for testing configurations: a broader range of data points offers
more chances of uncovering issues, making it a valuable asset for
any testing process.

Fuzzing Results During the loading of the interaction graphs,
which involved the execution of 1,696,386 events, we observed
6,907 (0.41%) errors (see Table 3). First, we attribute the majority of
errors (59.78%) to known issue: GitLab’s internal processing results
in a lag [28]; for example, the creation of a repository may be suc-
cessful, but a future PushEvent may fail as it is not available yet.
Practically, we could counter this by adding a delay into our frame-
work, but a better solution would be to improve the performance
on the server’s side. Second, there are four outstanding errors for
which we have identified the sources but we cannot offer any ex-
planations despite our best efforts. Third, a substantial portion of
errors (40.16%) escapes our debugging attempts: the API responds
with empty dictionaries, which appears to be (for our use cases)
undocumented behaviour.

7 Efficient evolution and evaluation

In conclusion of this first case study of Socialz, we would like to
bring attention to two important research questions: how can we
efficiently (1) evolve and (2) evaluate community interaction?

Efficiently evolving community interaction is crucial as it allows
for iterative improvements and explorations based on observed data,
increasing the chances of identifying social bugs. It may be benefi-
cial to evolve interactions either in-vivo, i.e. small-scale interactions
are evaluated “live” on a running server, or to run comprehensive
evaluations for each large community interaction akin to those
performed in Section 6. However, small-scale evaluations come
with the challenge of affecting the virtual machine and creating
unintended side-effects, such as triggering memory clean-ups or
altering the system’s performance over time, as seen in Figure 4. In
contrast to this, comprehensive analyses of the entire community
interaction (which may involve hundreds of thousands of events
like in our case) are time-consuming, taking over one day each. As
a middle way between these two extremes, differential evaluations
may be a solution, but only if the effects of mutations can be attrib-
uted efficiently and accurately. Currently, this presents a significant
challenge both in practice and algorithmically.

The question of how much to evolve community interaction is
closely tied to the question of how to evaluate community interac-
tion. As our data analysis has shown, there is a significant amount
of noise present in the server under examination. This is a common
issue in complex systems such as Android phones [4], where the
targeted application shares resources with multiple processes and
modern multi-core hardware. Existing validation methods, such as
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Table 3: Fuzzing results. The 6,907 errors are the result of executing 1,696,386 events.

APl return value  API explanation [16]

count Our best explanation

304 Not Modified The resource hasn’t been modified since the last
request.

400 Bad Request A required attribute of the API request is miss-
ing. For example, the title of an issue is not

given.

403 Forbidden The request isn’t allowed. For example, the user
isn’t allowed to delete a project.

404 Not Found A resource couldn’t be accessed. For example,

an ID for a resource couldn’t be found, or the
user isn’t authorized to access the resource.

409 Conflict A conflicting resource already exists. For exam-
ple, creating a project with a name that already
exists.

NaN (not documented)

1(0.01%) We have identified the offending user and their ac-
tions, but we have no explanation.

3(0.04%) It is unclear why the three “issues” (PushEvents)
fail, as we are enforcing minimum and maximum
length on issue title, body, and message.

172 (2.49%) Because of a known issue: GitLab lag [28].

3660 (52.99%) Because of a known issue: GitLab lag [28].

297 (4.30%) Because of a known issue: GitLab lag [28].

2774 (40.16%) We have no explanation.

complete rollbacks to known states or extended repetition, are not
practical due to the time and resources required. This necessitates
schemes and performance indicators that allow for reliable and
efficient attribution of community interactions to their effects.

8 Threats to Validity

In this section, we discuss potential threats that might have affected
the validity of our work.

8.1 External Validity

External validity concerns the extent to which the results of a study
can be generalised or applied to settings other than those used in the
study. Our work was conducted on a specific dataset from GitHub
and a GitLab CE server. This specific environment and dataset might
not be representative of all possible scenarios. However, our choice
was based on practical considerations (for example, we are unaware
of another, substantial social network for which interaction data
is available as well as options to execute those interactions on
a production-quality server) and the widespread usage of these
platforms in the developer community. In addition, the differences
among the Original, Evolved, Simple, and Random datasets might
not capture the entire spectrum of possible community interactions.
This limitation might affect the generalisability of our findings
across other datasets.

8.2 Internal Validity

Internal validity pertains to whether a study establishes a cause-
and-effect relationship. The creation of the “Random” dataset by
generating connections randomly could introduce uncontrollable
factors that might not be representative of real-world interactions.
While it serves as a basis of comparison, it is crucial to be cautious
when interpreting results derived from this dataset. To overcome a
limitation in the number of followed users, we modified GitLab’s
source code. Although we conjecture that this alteration did not
adversely affect our results, it is essential to acknowledge that this
change could introduce unforeseen variables into the experiment.

8.3 Construct Validity

Construct validity evaluates whether the measures used for the
study accurately represent the concept they are intended to measure.
The method of crafting the “Simple” dataset by merely copying
events until it matches the size of the evolved list might not be the
most robust way of ensuring simplicity.

9 Conclusions and Future Work

We present a new social fuzz testing method called Socialz, which is
based on publicly accessible data from GitHub. Our approach uses
evolutionary computation to diversify community interactions, and
then evaluates the results on a GitLab CE server.

The key takeaways of our research are:

(1) Although the initial setup of social fuzz testing requires
significant effort, it is feasible.

(2) Evolutionary diversity optimisation can generate community
interactions that are significantly different from the original
data or random data, potentially uncovering social bugs.

(3) In the actual fuzzing, we came across (1) one known limita-
tion of GitLab CE (that simple data replay could not), and
(2) 6,907 errors, of which 40.16% are beyond our debugging
skills.

Future work in this area offers endless possibilities, such as the
further characterisation of sub-communities, the exploration of
additional community interactions and the related features, and the
integration of Socialz with traditional fuzz testing techniques that
target code-level or system-level interactions.

To support future research in social testing, we have made
available all code, data, and virtual machines used in this study:
https://github.com/fzanart/Socialz/.
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