
Towards Adaptation in Multiobjective Evolutionary
Algorithms for Integer Problems

Günter Rudolph
Department of Computer Science

TU Dortmund University
Dortmund, Germany

guenter.rudolph@tu-dortmund.de

Markus Wagner
Department of Data Science and AI

Monash University
Clayton, Australia

markus.wagner@monash.edu

Abstract—Parameter control refers to the techniques that
dynamically adapt the parameter values of the evolutionary
algorithm during the optimization process, such as population
size, crossover rate, or operator selection. Adaptation can im-
prove the performance and robustness of the algorithm, however,
parameter control mechanisms themselves need to be designed
and configured carefully. With this article, we contribute a
systematic investigation of an adaptive, multi-objective algorithm
that is designed for the optimisation of problems in unbounded
integer decision spaces. We find that (1) adaptation outperforms
the best static configurations by 39–82%, and (2) performance
of the multi-objective algorithm is often independent of the
adaptation scheme’s initial configuration.

Index Terms—multiobjective evolutionary algorithm, integer
search space, step size control, self-adaptation

I. INTRODUCTION

Multi-objective optimization (MOO) is a branch of opti-
mization addressing problems with multiple conflicting ob-
jectives that require simultaneous optimization. MOO finds
extensive applications across diverse fields, such as science,
engineering, economics, and logistics, where optimal decisions
frequently involve trade-offs between two or more criteria.
Examples of MOO problems include maximizing profit while
minimizing the environmental impact of an industrial process,
maximizing the potency while minimizing the side effects
of a drug, and minimizing error rates while maximizing the
accuracy of a machine learning model.

Evolutionary computation (EC) encompasses a range of bio-
inspired algorithms replicating natural processes like evolu-
tion, immune systems, and swarm intelligence for addressing
intricate optimization problems. Successfully applied to tackle
multi-objective optimization (MOO) problems, EC leverages
population-based search to approximate the Pareto frontier—a
collection of nondominated solutions representing optimal
trade-offs among objectives. The field of EC methods for
MOO, also termed evolutionary multi-objective optimization
(EMO) methods, has witnessed extensive study and devel-
opment over the past decades, yielding a diverse array of
algorithms. For a comprehensive overview, interested readers
are directed to two surveys [14, 15].

Many EC methods are parameterized, necessitating the
setting of parameters; for instance, population sizes and prob-
abilities for variation operators. These parameters are subject

to adjustment for performance enhancement and robustness.
Predictably, following the taxonomy by Eiben et al. [4] on
parameter settings, they can be fixed through offline opti-
mization (also called “parameter tuning”) or they can be
dynamically set based on online optimization (also called
“parameter control”). In the latter, we can distinguish three
approaches: (1) deterministic approaches assume a consistent
pattern in optimal settings; (2) adaptive approaches utilize
feedback from the optimization process; and (3) self-adaptive
approaches embed parameter choices within individuals. It is
noteworthy that while this taxonomy provides a classification
for certain mechanisms, the usage of terms like “adaptive”
and “self-adaptive” in existing literature can be quite liberal,
especially with the influence of related concepts from other
domains such as “self-adaptive software systems” or “self-
driving cars”. Our work can be viewed as “adaptive” following
Eiben et al., or as self-adaptive in that the algorithms adjust
themselves based on observations.

Interestingly, despite the necessity of offline and online op-
timization of algorithms, work on adaptive parameter control
in MOO seems a much under-explored topic. For example, the
referenced taxonomy on parameter settings overlooks MOO,
and the two MOO surveys mentioned earlier only touch upon
a handful of works involving some form of adaptation, where
it is often limited to adjustments in the objective space, such
as dynamic reference point allocation, or focuses on adapting
population sizes and varying operator selection. But even
in the more recent literature, especially adaptive approaches
are few and far apart, even though self-adaptive approaches
enjoy a long history and popularity, for example, with that
of Abbas [5] being one of the first and with that of Igel et
al. [9] being one that is based on self-adaptive, single-objective
evolution strategies.

In contrast to this, the area of a more “algorithm-level”,
adaptive control appears very much overlooked, to control as-
pects such as population sizes, crossover rates, or the choice of
crossover operators in general, possible because “the situation
is much more complicated than in single-objective optimiza-
tion” as Wessing et al. [17] noted. Noteworthy examples are
the investigations [11, 12, 16] which dynamically adjust the
mutation parameter and the crossover rate based on progress
in the objective space in multi-objective differential evolution,

and the adaptive operator selection [13] that is based on
improvements in the objective scores. However, these works
tend to share two characteristics:

• The mechanisms are outlined, and a singular parameter-
ization is experimentally assessed using standard bench-
marks, usually with an emphasis on surpassing the state-
of-the-art, rather than systematically exploring the design
choices underpinning the mechanisms.

• The problems involve continuous design spaces, posing
a challenge in devising practical adaptive mechanisms.
For instance, when success is gauged by the number
of nondominated solutions generated, minor mutations
may mislead mechanisms into adhering to those minor
changes instead of achieving substantial progress toward
the true Pareto frontier with larger mutations.

When it comes to systematic investigations that are purely
theoretical or systematic from the ground up, works are
typically limited to single objectives, and to convergence for
continuous settings [10] or to bitstrings for computational
complexity analyses. For example, Doerr et al. presented a
simple (1+1) EA with success-based multiplicative mutation
rate updates [20] and investigated the influence of the adapta-
tion scheme’s starting values [19]. The only theoretical work
that we are aware of on self-adaptation and on single-objective
problem with integer decision spaces is another one by Doerr
et al. [18].

With this present article, we make two contributions:

1) We define an adaptive, multi-objective framework for
unbounded integer decision spaces intentionally con-
structed from well-understood components, aiming to fa-
cilitate future theoretical investigations. We focus on this
particular problem class since it is widely unexplored at
present in theory as well as algorithm design.

2) We systematically explore the parameterization of the
framework through a full factorial experimental design.
Our observations indicate the necessity of adaptive ap-
proaches to achieve the best results, emphasizing the
importance of setting up even adaptive approaches cor-
rectly.

The remainder of the paper is organized as follows. In
Section II, we define a generalization of the biobjective opti-
mization problem proposed in [21], which has an unbounded
integer search space. Then, in Section III, we describe our
algorithmic starting point, which we base on SEMO [6] and
which we tailor for integer settings to employ a Bilateral
Geometrical Distribution [3]. Section IV then describes how
we employ the concept of Rechenberg’s success rule [1] to
control a single step size being valid for all individuals; this
results in our parameterized evolutionary algorithm named
ASEMO (adaptive SEMO). Next, we lay out the experimental
plan in Section V and then report on the results of our
computational study in Section VI, before outlining directions
for future work in Section VII.

Our data and code are available online [22].

Algorithm 1: SEMO: Algorithmic skeleton for evo-
lutionary multi-objective minimization of a given d-
objective function f : Zn → Rd and a given starting
point x(0) ∈ Zn.

1 P (0) = {x(0)};
2 t = 0;
3 while termination criterion not met do
4 choose x from P (t) uniformly at random;
5 y = mutation(x);
6 Q = P (t) \ {z ∈ P (t) : f(y) ⪯ f(z)} ;
7 if ∄z ∈ Q : f(z) ≺ f(y) then P (t+1) = Q ∪ {y};
8 else P (t+1) = Q;
9 t = t+ 1;

II. MULTIOBJECTIVE PROBLEM CLASS

Since an established benchmark for multi-objective un-
bounded integer problems does not exist apparently, we con-
sider a slight generalization of the biobjective optimization
problem (Equation 2) proposed in [21]. Let f : Zn → N2

0,
u, v ∈ Zn with u ̸= v. Then a class of biobjective optimization
problems is given by

f(x) =

(
∥x− u∥1
∥x− v∥1

)
→ min! (1)

where ∥ · ∥1 denotes the ℓ1-norm. If v = −u, a ∈ N, and
u = (a, 0, . . . , 0)T ̸= 0 ∈ Zn we obtain the special case f :
Zn → N2

0 with

f(x) =

(
|x1 − a|+ |x2|+ . . . |xn|

|x1 + a|+ |x2|+ . . . |xn|

)
→ min! (2)

for which Pareto set and Pareto frontier have been derived
analytically in [21]. In the general case, a slightly modified
version of the proof delivers the Pareto front

F ∗ = {h ∈ Z2 : h = (k, ∥u−v∥1−k)T, k = 0, 1, . . . , ∥u−v∥1}
(3)

with |F ∗| = ∥u− v∥1 + 1 and the Pareto set

X∗ = [u, v] ∩ Zn (4)

with |X∗| =
∏n

i=1(1 + |ui − vi|).

III. ALGORITHM

A. Control Flow

The algorithmic skeleton is the integer version of SEMO [6]
originally designed for binary problems. By design, the off-
spring is accepted if it either dominates an individual in the
population or if it is incomparable to all individuals in the
population. Note that the offspring y replaces x from the
population if f(y) = f(x) (implied by Line 6). This is an
intentional deviation from the original SEMO that would have
rejected y in this situation. In fact, this practice is in use for
many years as it supports the ability to traverse and finally
leave fitness plateaus.

Another deviation from SEMO regards the concept of
mutation (Line 5). In SEMO a single dimension is drawn
uniformly at random and the variable associated with that
dimension is mutated, whereas in global SEMO (GSEMO) [7]
the variable of each dimension is mutated independently with
probability p = 1/n where n is the dimension of the decision
space. We follow this approach by choosing p ∈ {1/n, 1}.

It remains to specify the mutation distribution and the step
size control.

B. Mutation Distribution

In principle, there are infinitely many possibilities to choose
a mutation probability with support Z. Because mutations in
integer space are modelled by adding a random value or vector,
plausible candidates are distributions whose probability mass
functions (p.m.f.s) are symmetric with respect to 0, unimodal
and shapeable by a parameter. Among the distributions in this
subset it was proposed (for integer settings) to pick out the
distribution with maximum entropy [3]. These conditions led
to a so-called Bilateral Geometrical Distribution [3] that ap-
peared later also under the name Discrete Laplace Distribution
[8]. Its p.m.f. is

P{Z = k } =
q

2− q
(1− q)|k| (5)

with q ∈ (0, 1) ⊂ R for k ∈ Z and moments

E[Z] = 0,V[Z] =
2 (1− q)

q2
and E[|Z|] = 2 (1− q)

q (2− q)
. (6)

We consider two approaches to apply this one-dimensional
mutation distribution in n-dimensional decision space.

1) Sub-dimensional mutation (p = 1/n): Each dimension is
mutated with probability p = 1/n by adding an independently
drawn integer random number with distribution (Equation 5).
In this case, the probability that none of the dimensions is
mutated is given by the sum over the probabilities that k
dimensions have been selected for mutations but for all of
these mutations we draw Z = 0 with probability b = P{Z =
0 } = q/(2− q). Thus, we obtain

n∑
k=0

(
n

k

)
pk (1− p)n−k bk = (1 + p (b− 1))n

which yields(
1 +

b− 1

n

)n

→ eb−1 = e
q

2−q−1 ∈ (e−1, 1)

for p = 1/n and taking the limit n → ∞. This result
reveals that some action must be taken in an EA without
recombination to avoid the useless fitness evaluation if such
an event has happened.

2) Full-dimensional mutation (p = 1): Each dimension is
mutated by adding a random number independently drawn
from distribution (Equation 5). In this case, the expected length
of the resulting random vector Z in ℓ1-norm is

s = E[∥Z∥1] = n · E[|Z1|] = n
2 (1− q)

q (2− q)

which can be rearranged to

q = 1− s/n

1 +
√

1 + (s/n)2
. (7)

The probability that mutation does not change any dimension
is

P{Z1 = 0 }n =

(
q

2− q

)n

→ e−s

after insertion of (Equation 7) and taking the limit n → ∞.

IV. STEP SIZE CONTROL

Evidently, the shape of the mutation distribution (Equa-
tion 5) can be manipulated by parameter q. The larger the value
of q, the narrower the p.m.f. of Z, and vice versa. The concept
of a step size is probably best conveyed by the mean absolute
deviation E[|Z|] in (Equation 6), as it roughly indicates how
many units you move to the left or right on average.

Because our proxy s = E[|Z|] for the mean step size in
one dimension can be solved for q (simply set n = 1 in
(Equation 7))

q =
1 + s−

√
1 + s2

s
= 1− s

1 +
√
1 + s2

(8)

we can multiplicatively adapt s as known from evolution
strategies in Rn before we determine q from the adapted value.

In [3] it is suggested to use Schwefel’s mutative self-
adaptation [2] also in the integer setting, which might be
reasonable if we equip each individual with its own step size.
But here, we will use the concept of Rechenberg’s success
rule [1] to control a single step size that is then valid for all
individuals.

To this end, we log the number of offspring within a
certain time window, that are nondominated with respect to
the population and which of them are actually dominating
any member in the population. A nondominated offspring is
referred to as an acceptance and a dominating offspring as an
improvement.

Let w ∈ N be the size of the time window, na ≤ w be
the number of acceptances and ni ≤ w be the number of
improvements. If s(t) ∈ R+ is the current mean step size at
step t ≥ 0 and ps ∈ (0, 1) the threshold of the relative success
frequency, then we might update the mean step size after each
time window as follows:

s(t+w) =

{
s(t) · c+ if ni/w > ps
s(t) · c− otherwise

(9)

for some constants c+ > 1 and c− ∈ (0, 1). Alternatively, we
may replace ni by ni + na in (Equation 9) yielding

s(t+w) =

{
s(t) · c+ if (ni + na)/w > ps
s(t) · c− otherwise

(10)

for possibly different choices of w, ps, c
+ and c−. Evidently,

an appropriate hyperparameter tuning is required, although a
proof of concept may be possible for any reasonable choice
of hyperparameters.

To prevent the algorithm from getting stuck prematurely,
the mean step size s should not fall below the threshold 1,

Algorithm 2: ASEMO: Evolutionary algorithm for a
biobjective function f : Zn → R2 with given starting
point x(0) ∈ Zn, mean step size s(0) ∈ R+ and
hyperparameters w, c+, c−, ps.

1 P (0) = {x(0)};
2 na = ni = 0;
3 t = 0;
4 while termination criterion not met do
5 choose x from P (t) uniformly at random;
6 y = mutation(s(t), x);

// selection
7 E(y) = {z ∈ P (t) : f(z) = f(y)};
8 B(y) = {z ∈ P (t) : f(z) ≺ f(y)};
9 W (y) = {z ∈ P (t) : f(y) ≺ f(z)};

10 I(y) = {z ∈ P (t) : f(y) ∥ f(z)};
11 if |E(y)| > 0 then
12 P (t+1) = P (t) \ E(y) ∪ {y};
13 if x ̸= y then na = na + 1;
14 else if |W (y)| > 0 then
15 P (t+1) = P (t) \W (y) ∪ {y};
16 ni = ni + 1;
17 else if |B(y)| > 0 then
18 P (t+1) = P (t);
19 else
20 P (t+1) = P (t) ∪ {y};
21 na = na + 1;

// step size adaptation
22 if (t+ 1) mod w = 0 then
23 s(t+1) = update(s(t), na, ni);
24 na = ni = 0;
25 t = t+ 1;

as this is the smallest nonzero distance between two points
in integer space. Thus, whenever s < 1 after the adaptation
via (Equation 9) or (Equation 10) we readjust the step size to
s = 1 in the update procedure.

The modifications of the original SEMO are integrated in
the pseudo code shown in algorithm 2.

V. EXPERIMENTAL PLAN

Our main goal is to show that a success-based adaptive step
size control in MOEA can be realized, works well and finally
leads to better running times. As a baseline we compare the
runtime of ASEMO (Algorithm 2) with SEMO (Algorithm 1)
using fixed step sizes, after we have got an overview of the
sensitivity of the hyperparameters.

As the adaptive algorithm ASEMO is new and basically
nothing is known a priori about the interactions of the hy-
perparameters we have decided to run a full factorial design
(FFD) with the parameter values given in Table I. The problem
parameters and starting points can be found in Table II.

Although only few values per parameter are varied, we end
up with 1 728 experiments which are run 20 times each. For
each run we log the number of function evaluations (FEs), the
closest distance to the Pareto front (dPF) within the current

TABLE I
PARAMETER RANGES OF FFD IN DIMENSION n = 2.

parameter range of values

problem id (pid) 0, 1, 2, 3
starting point x(0) (xid) 0, 1, 2, 3
initial step size s(0) 1, 60 000
mutation prob. p 1/n, 1
window size 20n
success prob. ps 0.1, 0.2, 0.3
decrease factor c− 0.5, 0.6, 0.7
increase factor c+ 1.5, 1.75, 2.0

TABLE II
PROBLEM PARAMETERS u AND v FOR f(·) AND STARTING POINTS x IN

DIMENSION n = 2.

id 0 1 2 3

u (−50, 0) (−40,−10) (−25,−25) (0,−50)
v (+50, 0) (+10,+40) (+25,+25) (0,+50)

x (0, 20000) (10000, 10000) (15000, 5000) (20000, 0)

population, the current mean step size s, the current population
size µ and the current number of identified elements of the
Pareto frontier.

Whereas most of these values can be taken directly from
the algorithm, two values need a problem-specific calculation.

A. Determining distance to Pareto Front

As part of the data we will monitor during our experiments
we must be able to determine the distance of a solution in
objective space to the Pareto front. For all problems of our
problem class with the same value for δ = ∥u−v∥1 the Pareto
front F ∗ is identical, see (Equation 3). By design, all objective
vectors must be in N2

0. Therefore, the calculation can be split
into only three cases. Let h ∈ f(X) ⊂ N2

0. Then
1) If h1 ≤ δ then choose h∗ = (h1, δ − h1)

T ∈ F ∗ so that
d(h, F ∗) = h2 − (δ − h1).

2) If h2 ≤ δ then choose h∗ = (δ − h2, h2)
T ∈ F ∗ so that

d(h, F ∗) = h1 − (δ − h2).
3) Otherwise choose h∗ = (δ, 0)T ∈ F ∗ so that d(h, F ∗) =

h1 − δ + h2.
Putting all three cases together we obtain

d(h, F ∗) = h1 + h2 − δ = ∥h∥1 − ∥u− v∥1.

Remark: There are other choices of h∗ in the three cases above,
but they all have the same distance.

B. Number of distinct optimal objective vectors discovered

We shall also keep track of the number of optimal individu-
als regarding the objective space, i.e., the number of elements
on the Pareto front F ∗ that has been discovered. For this
purpose we iterate over all members of the current population
and check if their distance to F ∗ is zero. In this case, we insert
the first component of the objective vector in a set-based data
structure that eliminates duplicates by design. The size of this

Fig. 1. Performance of the baseline approach SEMO with fixed step size and sub-dimensional mutation. Shown from left to right (in groups of 7 bars) are the
16 pid–xid combinations. Each group of 7 shows the performance of the baseline SEMO with the static step size of s(0) ∈ {1, . . . , 500}. Green shows the
number of function evaluations needed to find the first element of the Pareto frontier, and grey shows the subsequent number of function evaluations needed
to discover the entire Pareto frontier (medians of 20 runs).

set is equal to the number of distinct optimal objective vectors.
If the number of elements in the set is equal to |F ∗| = δ + 1
at the end of the iteration the entire Pareto front has been
identified and the algorithm can be terminated.

VI. RESULTS

A. Baseline

We ran SEMO (Algorithm 1) with fixed step size and set
the problem parameter as in Table II. The first four rows of
Table I describe the test plan, except that we set the fixed step
size to s(0) ∈ {1, 10, 20, 50, 100, 200, 500}.

Figure 1 illustrates the results as stacked bars. The lower
(green) bar represents the number of function evaluations
required to find the first Pareto optimal solution, while the
grey bar on top indicates the additional function evaluations
needed to uncover the entire Pareto frontier. Further details
are available in the caption. We cap the y-axes to facilitate
readability only; our qualitative observations still hold.

In the following, our focus is on a few key observations.
First, concerning the step sizes, we observe that the largest
range (100–500) leads to the quickest discovery of initial
solutions on the Pareto front (indicated by short green bars).
However, the smallest range (1–20) proves to be the fastest in
uncovering the entire Pareto frontier subsequently. Overall, the
optimal fixed step size appears to be 50. These observations, in
themselves, strongly advocate for adaptive parameter control.

Second, employing a static configuration with a step size of
1 unit—arguably a reasonable choice given the problem’s defi-
nition on integers—can result in extended runtimes, exceeding
300,000 evaluations merely to find the first Pareto front
solution. This is almost three orders of magnitude beyond the
efficiency of the fastest static configurations, which manage to
explore the entire Pareto frontier much faster.

Third, we note that for problems pid=1 and pid=2 (with the
largest Pareto sets), it takes the most time to explore the entire
frontier, especially when the step size is large.

While the figure illustrates results with sub-dimensional
mutation (refer to Section III-B), the outcomes for full-
dimensional mutation generally exhibit the same pattern for

problems pid=1 and pid=2. For the other two problems, how-
ever, runtimes are substantially longer for the full-dimensional
mutation as uncovering the entire front takes much longer then.

B. Adaptive SEMO based on domination

Next, we investigate the impact of the configuration of our
ASEMO with the domination-based update rule (Equation 9).
The results are shown in Figure 2 (with initial step size s(0) =
1) and Figure 5 (with s(0) = 60 000). In contrast to before,
we focus on the results for the full-dimensional mutation, as
those with sub-dimensional mutation are slower.

In terms of the overall runtime required, we note that the
adaptation mechanism performs well, almost independently of
the mechanism’s configuration and regardless of the problem
and starting point. (1) Shifting from a static to an adaptive
configuration saves 55–81% of the evaluations when compar-
ing the fastest static and adaptive configurations (per problem
and per starting point). (2) In terms of robustness to the
configuration: almost all adaptive configurations are faster than
the fastest, static one (Section VI-A’s fastest median on any
problems was 6 052): of the 1728 configurations 94% (1626)
are faster, with the fastest adaptive one requiring only 1 729
(median) function evaluations.

Second, the configurations exhibiting the slowest perfor-
mance are predominantly those with the highest required
success probability (ps = 0.3). We conjecture that this trend
is influenced by the fact that achieving a success probability
of 0.3, crucial for increasing the step size and thereby acceler-
ating progress, occurs infrequently, given the baseline success
probability is approximately 0.25. Supporting this conjecture
is the absence of a similar pattern in Figure 5, where the initial
step size is very large across all experiments, which gives the
algorithm enough time to get to the front despite the step size
collapsing. Examplarily, Figures 3 and 4 support this further.
First, when started with a small initial step size (which in
Section VI-A was performing poorly when used statically),
it increases quickly until the first solution on the frontier is
found and then reduces again until to aid the discovery of the
entire Pareto frontier. Second, when started with a large step

xid=0 xid=1 xid=2 xid=3

ps=0.1 ps=0.2 ps=0.3 ps=0.1 ps=0.2 ps=0.3 ps=0.1 ps=0.2 ps=0.3 ps=0.1 ps=0.2 ps=0.3

pi
d=

0
pi

d=
1

pi
d=

2
pi

d=
3

Fig. 2. Performance of ASEMO (with full-dimensional mutation and initial step size s(0)= 1) on the 16 combinations of problems and starting points
(pid–xid). For each pid–xid combination, we show from left to right the three success probabilities (ps∈{0.1, 0.2, 0.3}). For each success probability we show
the nine combinations of decrease factors and increase factors (from left to right):

(
c−=0.5, c+∈{1.5, 1.75, 2.0}

)
,
(
c−=0.6, . . .

)
, and

(
c−=0.7, . . .

)
. As

in Figure 1, green shows the number of function evaluations needed to find the first element of the Pareto frontier, and grey shows the subsequent number of
function evaluations needed to discover the entire Pareto frontier (medians of 20 runs).

Fig. 3. Sample run, starting with the small step size s(0) = 1, pid=1, xid=2,
and full-dimensional mutation. Colours: black is the distance d∗ to the Pareto
frontier, blue is step size, green is population size µ, red is number of optimal
objective vectors found.

Fig. 4. Sample run, starting with the large step size s(0) = 60 000, pid=1,
xid=2, and full-dimensional mutation. Colours: black is the distance d∗ to the
Pareto frontier, blue is step size, green is population size µ, red is number of
optimal objective vectors found.

xid=0 xid=1 xid=2 xid=3

ps=0.1 ps=0.2 ps=0.3 ps=0.1 ps=0.2 ps=0.3 ps=0.1 ps=0.2 ps=0.3 ps=0.1 ps=0.2 ps=0.3

pi
d=

0
pi

d=
1

pi
d=

2
pi

d=
3

Fig. 5. Performance of ASEMO (with full-dimensional mutation and initial step size s(0)=60 000) on the 16 combinations of problems and starting points
(pid–xid). For each pid–xid combination, we show from left to right the three success probabilities (ps∈{0.1, 0.2, 0.3}). For each success probability we show
the nine combinations of decrease factors and increase factors (from left to right):

(
c−=0.5, c+∈{1.5, 1.75, 2.0}

)
,
(
c−=0.6, . . .

)
, and

(
c−=0.7, . . .

)
. As

in Figure 1, green shows the number of function evaluations needed to find the first element of the Pareto frontier, and grey shows the subsequent number of
function evaluations needed to discover the entire Pareto frontier (medians of 20 runs).

size (far beyond which in Section VI-A was performing poorly
when used statically), it keeps decreasing and never increases.

C. Adaptive SEMO based on nondomination

Next, we investigate the impact of the configuration of
our ASEMO with the update rule that considers both non-
dominated and dominated solutions (Equation 10). We limit
ourselves here to just the key observations.

First, ASEMO still performs well. 39–62% of evaluations
are saved by the best ASEMO configuration over the best
SEMO configuration (compared per starting point and prob-
lem), and 52% (902) remain below 6 052 function evaluations.

Furthermore, in direct comparison with ASEMO, these
two update rules perform very comparably (based on median
performance), but for interesting reasons: (1) the dominating
one stricly outperforms the nondominating rule in on all
problems (100%) with large Pareto sets (pid=1 and pid=2),

because the time needed to cover the entire Pareto front is
much larger when the nondominating rule is used (resulting
in “too many” successes and thus too large mutation step
sizes); (2) on the other two problems (which have small
Pareto sets), the nondominating rule is faster 80% (688) of
the time, in particular when the needed success probability is
high (ps ∈ {0.2, 0.3}).

VII. SUMMARY AND FUTURE WORK

We defined ASEMO as an flexible framework for the system-
atic investigation of adaptation in multi-objective optimisation
on problems with integer decision spaces. We showed that
adaptive parameter control is needed to efficiently solve the
investigated problems. ASEMO saves 39–82% of function
evaluations, while being robust to changes to its configuration.

Still, we have identified situations that warrant further
research. First, a large success rate setting caused the adaptive

algorithm to deteriorate into a static one with unimpressive
performance; hence, there is a potential need for adaptability in
the success rate as well. Second, we will revisit the acceptance
criterion: it proved to be beneficial to consider nondominating
while approaching the Pareto frontier, but nondominating
solutions can also trick the mechanism into large mutation
steps that are detrimental when attempting to discover the
entire Pareto frontier. Third, we plan to extend the study to
n > 2, other classes of test problems and presently used multi-
objective EAs.

REFERENCES

[1] Ingo Rechenberg. Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologischen
Evolution. Stuttgart (DE): Frommann-Holzboog, 1973.

[2] Hans-Paul Schwefel. Numerische Optimierung von
Computer-Modellen mittels der Evolutionsstrategie.
Basel (CH): Birkhäuser, 1977. DOI: 10.1007/978- 3-
0348-5927-1.

[3] Günter Rudolph. “An Evolutionary Algorithm for Inte-
ger Programming”. In: Parallel Problem Solving From
Nature (PPSN III). Ed. by Y. Davidor, H.-P. Schwefel,
and R. Männer. Springer, 1994, pp. 139–148. DOI: 10.
1007/3-540-58484-6 258.

[4] A.E. Eiben, R. Hinterding, and Z. Michalewicz. “Pa-
rameter control in evolutionary algorithms”. In: IEEE
Transactions on Evolutionary Computation 3.2 (1999),
pp. 124–141. DOI: 10.1109/4235.771166.

[5] H.A. Abbass. “The self-adaptive Pareto differential evo-
lution algorithm”. In: Congress on Evolutionary Com-
putation (CEC). Vol. 1. 2002, 831–836 vol.1. DOI: 10.
1109/CEC.2002.1007033.

[6] Marco Laumanns et al. “Running time analysis of multi-
objective evolutionary algorithms on a simple discrete
optimization problem”. In: Parallel Problem Solving
from Nature (PPSN VII). Springer, 2002, pp. 44–53.
DOI: 10.1007/3-540-45712-7 5.

[7] Oliver Giel. “Expected runtimes of a simple multi-
objective evolutionary algorithm”. In: IEEE Congress
on Evolutionary Computation, (CEC). IEEE, 2003,
pp. 1918–1925. DOI: 10.1109/CEC.2003.1299908.

[8] Seidu Inusaha and Tomasz J. Kozubowski. “A dis-
crete analogue of the Laplace distribution”. In: Journal
of Statistical Planning and Inference 136.3 (2006),
pp. 1090–1102. DOI: 10.1016/j.jspi.2004.08.014.

[9] Christian Igel, Nikolaus Hansen, and Stefan Roth. “Co-
variance Matrix Adaptation for Multi-objective Opti-
mization”. In: Evolutionary Computation 15.1 (2007),
pp. 1–28. DOI: 10.1162/evco.2007.15.1.1.

[10] Silja Meyer-Nieberg and Hans-Georg Beyer. “Self-
Adaptation in Evolutionary Algorithms”. In: Parameter
Setting in Evolutionary Algorithms. Springer, 2007,
pp. 47–75. DOI: 10.1007/978-3-540-69432-8 3.

[11] Karin Zielinski and Rainer Laur. “Differential evolution
with adaptive parameter setting for multi-objective op-
timization”. In: IEEE Congress on Evolutionary Com-

putation (CEC). 2007, pp. 3585–3592. DOI: 10.1109/
CEC.2007.4424937.

[12] Weiyi Qian and Ajun Li. “Adaptive differential evo-
lution algorithm for multiobjective optimization prob-
lems”. In: Applied Mathematics and Computation 201.1
(2008), pp. 431–440. DOI: https://doi.org/10.1016/j.
amc.2007.12.052.

[13] Ke Li et al. “Adaptive Operator Selection With Bandits
for a Multiobjective Evolutionary Algorithm Based on
Decomposition”. In: IEEE Transactions on Evolution-
ary Computation 18.1 (2014), pp. 114–130. DOI: 10.
1109/TEVC.2013.2239648.

[14] Shelvin Chand and Markus Wagner. “Evolutionary
many-objective optimization: A quick-start guide”. In:
Surveys in Operations Research and Management Sci-
ence 20.2 (2015), pp. 35–42. DOI: https://doi.org/10.
1016/j.sorms.2015.08.001.

[15] Bingdong Li et al. “Many-Objective Evolutionary Al-
gorithms: A Survey”. In: ACM Computing Surveys 48.1
(2015). DOI: 10.1145/2792984.

[16] Fran Sérgio Lobato and Valder Steffen Jr. Multi-
objective optimization problems: concepts and self-
adaptive parameters with mathematical and engineer-
ing applications. Springer, 2017. DOI: 10.1007/978-3-
319-58565-9.

[17] Simon Wessing et al. “Toward Step-Size Adaptation
in Evolutionary Multiobjective Optimization”. In: Evo-
lutionary Multi-Criterion Optimization (EMO). Ed. by
Heike Trautmann et al. Springer, 2017, pp. 670–684.

[18] Benjamin Doerr, Carola Doerr, and Timo Kötzing.
“Static and self-adjusting mutation strengths for multi-
valued decision variables”. In: Algorithmica 80.5
(2018), pp. 1732–1768. DOI: 10 . 1007 / s00453 - 017 -
0341-1.

[19] Carola Doerr and Markus Wagner. “Sensitivity of Pa-
rameter Control Mechanisms with Respect to Their
Initialization”. In: Parallel Problem Solving from Nature
(PPSN XV). Ed. by Anne Auger et al. Springer, 2018,
pp. 360–372. DOI: 978-3-319-99259-4 29.

[20] Carola Doerr and Markus Wagner. “Simple on-the-
fly parameter selection mechanisms for two classical
discrete black-box optimization benchmark problems”.
In: Genetic and Evolutionary Computation Conference
(GECCO). ACM, 2018, pp. 943–950. DOI: 10 .1145 /
3205455.3205560.

[21] Günter Rudolph. “Runtime Analysis of (1+1)-EA on a
Biobjective Test Function in Unbounded Integer Search
Space”. In: IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2023, pp. 1380–1385. DOI:
10.1109/SSCI52147.2023.10371816.

[22] Günter Rudolph and Markus Wagner. Towards Adap-
tation in Multiobjective Evolutionary Algorithms for
Integer Problems (Dataset). Zenodo, May 2024. DOI:
10.5281/zenodo.11096148. URL: https : / /doi .org/10.
5281/zenodo.11096148.

